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With the growing popularity of smart speakers, numerous novel acoustic sensing applications have been proposed for
low-frequency human speech and high-frequency inaudible sounds. Spatial information plays a crucial role in these acoustic
applications, enabling various location-based services. However, typically commercial microphone arrays face limitations in
spatial perception of inaudible sounds due to their sparse array geometries optimized for low-frequency speech. In this paper,
we introduce MetaAng, a system designed to augment microphone arrays by enabling wideband spatial perception across
both speech signals and inaudible sounds by leveraging the spatial encoding capabilities of acoustic metasurfaces. Our design
is grounded in the fact that, while sensitive to high-frequency signals, acoustic metasurfaces are almost non-responsive to
low-frequency speech due to significant wavelength discrepancy. This observation allows us to integrate acoustic metasurfaces
with sparse array geometry, simultaneously enhancing the spatial perception of high-frequency and low-frequency acoustic
signals. To achieve this, we first utilize acoustic metasurfaces and a configuration optimization algorithm to encode the unique
features for each incident angle. Then, we propose an unrolling soft thresholding network that employs neural-enhanced
priors and compressive sensing for high-accuracy, high-resolution multi-source angle estimation. We implement a prototype,
and experimental results demonstrate that MetaAng maintains robustness across various scenarios, facilitating multiple
applications, including localization and tracking.
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1 INTRODUCTION
In recent years, the evolution of smart speakers has marked a significant milestone in the realm of consumer
technology. With the adoption of microphone arrays, smart speakers can be integrated with capabilities like
audio source separation [10, 58], speech enhancement [68], and voice localization [18, 53]. These features are
underpinned by the speech interface (SI) that processes and responds to human speech in the audible band.
Moreover, researchers also extend smart speaker capabilities beyond audible sound interactions, exploring
the use of inaudible sounds for some novel applications, such as motion-based interaction [23, 34], health
monitoring [52, 66], elderly fall detection [4, 26], and indoor localization [25]. By exploring the potential of the
internal microphone array, smart speakers have a broad range of applications to improve everyday efficiency and
interconnectivity.

Spatial perception, i.e., Angles-of-Arrival (AoAs) estimation, is crucial to enablemany smart speaker applications
involving spatial information (e.g., localization and tracking), which leverages the internal microphone array
to capture the spatial diversity of incoming sounds. The efficacy of spatial perception largely depends on the
separation between two adjacent microphones (called inter-element separation). Generally, the inter-element
separation should be smaller than the half wavelength of the operating frequency [31] (refers to a dense array),
while larger separations may cause ambiguous angles [50, 52] (refers to a sparse array), i.e., several possible
solutions for incident angles. This phenomenon creates a dilemma for the design of microphone arrays to support
both audible and inaudible sounds, as it is difficult to balance the need for inter-element separation between
high-frequency and low-frequency signals. Specifically, the frequency range of speech signals is generally between
300 and 3400𝐻𝑧 [11], with a half wavelength larger than around 5𝑐𝑚 (given the sound speed is 340𝑚/𝑠). While
inaudible sound for acoustic sensing often operates around 20𝑘𝐻𝑧 [44, 56, 65], with a half wavelength of about
0.85𝑐𝑚, which is almost 6 times smaller than the minimum required inter-element separation for human speech.
Therefore, a dense microphone array for speech signals is relatively sparse for inaudible sounds due to their
wavelength discrepancy.

This dilemma is more challenging for Commercial-Off-The-Shelf (COTS) smart speakers, because they have
only a fewmicrophones evenly spaced on the outside of the body in a circular array. For example, the most recently
announced Apple HomePod 2nd [1] (2023) and has 4 microphones for around 10𝑐𝑚 inter-element separation, while
the compact product Google Nest Mini [2] (2019) has 3 microphones for around 6𝑐𝑚 inter-element separation. It
implies that COTS smart speakers are mainly designed for speech interactions and are not ready for sensing
inaudible sounds, as illustrated in Fig. 1(a). Instead, if we adopt a dense microphone array to support inaudible
sounds, the performance of speech interfaces will be significantly affected since the inter-element spacing is far
less than the half wavelength of speech, as shown in Fig. 1(b). Prior works [34, 54] adopt a non-uniform array
to overcome the wavelength discrepancy, which, however, is not applicable to COTS smart speakers because
they have only a few mics and adopt a circular array for omnidirectional sensing. The most recent works [15, 24]
explore the acoustic stencils for extracting spatial information with only two microphones. However, these efforts
primarily focus on low-frequency sound, and their designs face challenges in extending to multi-source scenarios.
In this paper, we ask the following question: Can we empower COTS sparse microphone arrays to estimate the
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Fig. 1. Microphone arrays can be used to interact with human speech and also sense inaudible sounds. (a) Commercial
smart speakers have only a few microphones sparsely distributed on the outside of the body in a circular array due to the
large wavelength of human speech. Thus, commercial smart speakers have ambiguities when interacting with inaudible
sounds. (b) If we adopt a dense microphone array according to the short wavelength of inaudible sounds, the performance of
speech interfaces will be significantly affected. (c) MetaAng combines a passive shell with a sparse microphone array to
enable spatial perception for inaudible sounds without affecting the performance of speech interfaces.

fine-grained AoAs of inaudible sounds? In other words, the system should also be able to (i) work properly with
multiple sources and (ii) achieve high accuracy and angular resolution.

This paper introduces MetaAng, a system designed to augment microphone arrays by enabling wideband spatial
perception capabilities across both speech signals and inaudible sounds. As illustrated in Fig. 1(c), MetaAng
employs a passive structure (also known as acoustic metasurface) that envelops a microphone array with
sufficiently large inter-element separation for human speech. The passive structure is a 3D-printed shell with
sub-wavelength internal structures for inaudible sounds to manipulate incident waves, which can, by carefully
designing, encode different spatial features for different incident angles. Such distinct spatial features can be
used to resolve the angular ambiguity. Meanwhile, the passive structure barely impacts the processing of human
speech, owing to the significant difference in wavelength. Therefore, MetaAng solves the microphone array
design dilemma caused by the wavelength discrepancy by transforming such a discrepancy into a beneficial
feature via introducing a passive structure. Moreover, since the passive structure is a 3D-printed low-cost shell,
MetaAng can be easily integrated into existing microphone arrays in COTS smart speakers.
Though the idea of introducing a passive structure to resolve the wavelength discrepancy is promising, it

further poses three new challenges for spatial perception using inaudible sounds:
First, how to estimate AoA with the presence of the passive structure and support multiple sources? On the one

hand, AoA estimation is, conventionally, achieved by leveraging the phase difference of each microphone channel,
which changes accordingly with the incident angle. However, the presence of the passive structure will alter the
phase difference, making the conventional algorithms fail. On the other hand, the passive structure introduces new
spatial features that can be used to classify the incident angle [15, 24]. Nevertheless, the intuitive classification
approach fails to support tracking multiple sources since there are a mass of combinations of possible angles. To
address this challenge, we propose a compressive sensing based angle estimation model to estimate the AoA
with the presence of the passive structure. Specifically, we formulate the passive structure aided microphone
array as a linear model, and we can solve this ill-posed inverse problem with compressive sensing by leveraging
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the sparsity of the incident angle, under the assumption that there is only a tiny portion of incident angles are
occupied by sound sources.
Second, how to find the optimal design of spatial encoding for better sensing accuracy? The sensing accuracy

of AoA estimation with compressive sensing is highly related to the design of a combination of the passive
structure and the microphone array. There are many possible designs for the passive structure, and each will
encode different spatial features with a given form factor of a microphone array, thus affecting the performance
of AoA estimation. Therefore, the optimal design of the passive structure should maximize the difference of
spatial encoding features at different frequencies, which can be used to improve the sensing accuracy. To achieve
this, we build an optimization model to minimize the average similarity of encoding features across all possible
angles and the maximum similarity of encoding features between different angles to search for the optimal design
of the passive structure with the given form factor of microphone arrays.
Third, how to improve the angular resolution? The conventional compressive sensing algorithm, such as the

Iterative Soft Thresholding Algorithm (ISTA) [42] can produce sharp peaks with one sound source in the angle
profile (i.e., the AoA estimation results), which is expected to manifest satisfactory angular resolution. However,
when two sound sources are present and getting closer (e.g., 5◦ apart), the two sharp peaks will be merged to one
broader peak, limiting the angular resolution for multiple-source estimation. This is due to the fact that closer
incidence angles will tend to produce more similar spatial features even with the optimization of the passive
structure. The received signal from two closely located sound sources may be easily confused with the linear
combination of many nearby angles, and finally, the solver produces a merged and broad peak. To address this
challenge, we propose Unrolling Soft Thresholding Network (USTNet) that uses a neural-enhanced prior in a
data-driven manner for compressive model. Compared with the hand-picked 𝑙1-norm prior, the neural-enhanced
prior can learn a sparsifying transform and impose more vital sparsity constraint, producing finer peaks even
when the two sound sources are close.

Our contributions are summarized as follows:

• We design MetaAng, a system capable of high-accuracy and high-resolution AoA estimation using 3D
printed passive structures combined with sparse microphone arrays. To our knowledge, this is the first
system that uses passive structures to enhance microphone arrays with spatial perception for inaudible
sounds, while minimally affecting the processing of voice-frequency sounds.

• We propose a neural-enhanced compressive angle estimation algorithm to estimate the AoA leveraging the
frequency diversity of the passive structure, which can support the concurrent and high-resolution angle
estimation for multiple sources.

• We develop an optimization model aimed at identifying the optimal configuration of the passive structure.
This model enables us to tailor unique encoding features for each incident angle, thereby enhancing the
accuracy of angle estimation.

• We implement MetaAng on a COTS Bela platform and evaluate its performance in a variety of scenarios.
Specifically, for inaudible sounds, the frequency diversity introduced by AMS enables a mean angle
estimation error of 1.91 degrees even with only two microphones, and an error of 4.85 degrees when
estimating 5 incident signals simultaneously. Compared with the baseline super-resolution angle estimation
algorithm, the system can reduce the estimation error from 53.9% to 64.5%. Moreover, the system can
maintain stable angle estimation performance for microphone arrays of different geometric types. Finally,
we also evaluate the performance of our system in localization and tracking.
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Fig. 3. Increasing inter-element separation will cause ambiguous angles of arrival.
As the separation of two microphones (red diamond marker) increases, the beams
become finer, but causing ambiguity (some examples are marked by green dots)
in localizing the true sound source (blue square marker).

2 PRELIMINARY STUDY
This section first explains the fundamentals of AoA estimation and the reasons behind ambiguous angles
arising from sparse microphone arrays. Next, we explore the concept of acoustic metasurface and its impact on
manipulating sound waves.

2.1 Basics of Angle Estimation
Angle Estimation Model. The estimation of AoA is typically achieved through a microphone array. Consider

there is a tone wave 𝑥 with wavelength 𝜆 arrives at the array at angle 𝜃 from the far field (i.e., the sound wave
arrives at each microphone in parallel), as shown in Fig. 2. Due to the difference in traveling distance at adjacent
two microphones, the received signal has a phase difference 2𝜋𝑑 cos(𝜃 )/𝜆, where 𝑑 is the separation of two
microphones. Assume there are 𝑁 microphones and the received signal 𝑦 (𝜃 ) at microphones can be modeled as
follows:

𝑦 (𝜃 ) = 𝑆 (𝜃 )𝑥 = [1, 𝑒− 𝑗2𝜋𝑑 cos(𝜃 )/𝜆, 𝑒− 𝑗2𝜋2𝑑 cos(𝜃 )/𝜆, . . . , 𝑒− 𝑗2𝜋 (𝑁−1)𝑑 cos(𝜃 )/𝜆]𝑇𝑥 (1)

where 𝑆 (𝜃 ) is called the steering vector, which is a function of the angle of arrive 𝜃 and describes the phase shift
of the signal 𝑥 at microphones due to the spatial separation 𝑑 .

The attenuation of power of received signals at each microphone can be ignored under the far-field assumption,
thus phase shift plays the dominant role in the conventional angle estimation algorithms. Typically, we can
search all possible angles and compensate for the corresponding phase shift, then find the angle that maximizes
the power of the superposition of phase-aligned signals at each microphone. Specifically, we have the following
model:

max
𝜃

𝑆 (𝜃 )𝑇𝑥 (𝜃 ) (2)

The peak value can be achieved at many angles if 2𝜋𝑑 cos(𝜃 )/𝜆 = 𝜙0 + 2𝑘𝜋 , where 𝜙0 can be any number within
(−𝜋, 𝜋) and 𝑘 can be any integer. To get the unambiguous solution, we have to ensure that the phase shift between
adjacent microphones does not exceed 𝜋 , i.e., |2𝜋𝑑 cos(𝜃 )/𝜆 | ≤ 𝜋 , such that 𝑘 = 0 and yields a unique solution.
To achieve this, we have to make the separation smaller than half the wavelength of the signal, i.e., 𝑑 ≤ 𝜆/2.
However, for a larger separation, there will be multiple choices of 𝑘 to achieve the peak value such that causes
the ambiguous angles.
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Fig. 4. The structure and response of AMS cell: (a) represents the structure of the AMS cell, while (b) and (c) are its
corresponding amplitude and phase response, respectively.

Impact of Sparse Microphone Arrays. Signals from the ambiguous angles, e.g., 𝜃1, 𝜃2, and 𝜃3, will yield the
identical received signals at the microphone array (i.e., the same phase shift corresponding to the reference
mic), such that we have 𝑥 (𝜃1) = 𝑥 (𝜃2) = 𝑥 (𝜃3). Many popular algorithms are proposed in the literature for AoA
estimation, such as MVDR [53] and MUSIC [20]. However, none of these approaches apply to distinguish identical
signals from ambiguous angles. Fig. 3 illustrates this through some examples of possible angle estimations (i.e., the
different beams) with varying inter-element separations using a two-microphone setup, where the frequency of
inaudible sound is set to be 20𝑘𝐻𝑧. In Fig. 3(a), when the separation equals half wavelength, i.e., 𝜆/2 (specifically
0.85𝑐𝑚 for 20𝑘𝐻𝑧), a single beam is observed, enabling unambiguous AoA estimation, as indicated by the blue
mark. However, increasing the separation to 3𝜆 (i.e., 5.15𝑐𝑚) results in the emergence of 6 ambiguous beams,
complicating the determination of the true AoA. This complexity escalates to 14 beams at a separation of 7𝜆
(approximately 12𝑐𝑚). The ambiguous angles pose significant challenges for finding the true AoAs of the sound
sources.

2.2 Passive Acoustic Metasurface
Properties of Passive Acoustic Metasurface (AMS). Our passive structure is a 3D-printed planar acoustic metasur-

face that can manipulate the phase of acoustic waves. AMS comprises many unit cells, comprising a coiled-up
internal structure to increase the path length of acoustic waves. Fig. 4(a) illustrates examples of unit structures [71]
used in our system. Assume the incident wave passes through a unit cell from the left side, then the coiled-up
path of the wave prolongs its traveling time through the cell, thereby controlling the phase delay and amplitude
variations of the outgoing wave. The phase delay is determined by two essential parameters, 𝑑1 and 𝑑2, which
should be tuned accordingly to the wavelength of the operating frequency. For any specific frequency (e.g., 20𝑘𝐻𝑧
in our case), we can scale the size of the unit cell and vary the combination of these two parameters to design
multiple different unit cells to manipulate the incident acoustic wave with complete phase control in the range
from 0 to 2𝜋 . One practical approach to determine the values of 𝑑1 and 𝑑2 is using simulators like COMSOL [3],
a widely recognized finite element-based multiphysics simulator. By precisely adjusting 𝑑1 and 𝑑2, we have
identified 16 distinct cell types, each characterized by phase shifts ranging from 0 to 2𝜋 . Specifically, in our
setup, the ranges of 𝑑1 and 𝑑2 are 0∼6.4𝑚𝑚 and 0∼3.1𝑚𝑚 for phase control, respectively. For each cell unit, our
goal is to select a configuration that offers a phase shift closest to the desired offset. Using COMSOL, we have
simulated each cell type’s amplitude and phase response across a specific bandwidth, which assists in crafting
unique response patterns for different incidence angles. Fig. 4(b) and Fig. 4(c) highlight the response of two cell
types within the 16 − 20𝑘𝐻𝑧 frequency band, laying the groundwork for the AMS design approach.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 8, No. 2, Article 52. Publication date: June 2024.



Pushing the Limits of Acoustic Spatial Perception via Incident Angle Encoding • 52:7

0 45 90 135 180
Angle Spectrum (°)

-25

-20

-15

-10

-5

0

Po
w

er
 (d

B)

W/o AMS With AMS Ground truth

0 45 90 135 180
Angle Spectrum (°)

-15

-10

-5

0

Po
w

er
 (d

B)

W/o AMS With AMS Ground truth

0 45 90 135 180
Angle Spectrum (°)

-20

-15

-10

-5

0

Po
w

er
 (d

B)

W/o AMS With AMS Ground truth

Response peak 
at 90 degree

Response peak 
at 120 degree

Response peak 
at 50 degree

(a) Source at 50 degrees. (b) Source at 90 degrees. (c) Source at 120 degrees.

Fig. 5. The impact of AMS on the AoA estimation of low-frequency sound, using a uniform linear array (internal unit spacing
4.25cm) when equipped without/with AMS. The results show that the existence of AMS has a negligible impact on the angle
estimation of low-frequency sound.

Applications of Passive AMS. For AMS, each cell can act as a ‘mini-antenna’ to control the phase change at a
specific unit cell, and the combination of different unit cells of AMS can beamform acoustic waves like a phased
array. However, the significant difference between the passive AMS and an active phased array is that the function
of AMS is fixed and cannot be changed after fabrication, while an active phased array can be altered flexibly.
Though the passive AMS is not adjustable, it is still beneficial in many applications by carefully configuring its
units. For example, we can focus the energy of acoustic waves from an omnidirectional speaker to a specific
direction by placing a low-cost AMS in front of the speaker [35]. It is also possible to steer the direction of the
focused beam by combining a passive AMS with a small phased array to equivalent the performance of a large
phased array [71]. These applications are implemented at the speaker side to align the phase difference at each
unit of the AMS and finally perform beamforming to increase signal power in a specific direction. In this paper,
our basic idea is to adopt a passive AMS at the microphone side to bring more distinct spatial features.

Impact on Low-Frequency Sound. Since the unit cell design depends on the operating frequency (i.e., for the
inaudible frequency 20𝑘𝐻𝑧), it raises a question: Does AMS affect the array’s spatial perception ability for
low-frequency sounds? To explore this, we use a random AMS (the configuration of unit cells are randomly
picked from the 16 designs) and a linear 4-microphone array with 4.25𝑐𝑚 separation (corresponding to the
half wavelength of 4𝑘𝐻𝑧 sound) and conduct the impact of AMS on the low-frequency sound AoA estimation.
Specifically, we use a smartphone to loop-play pre-recorded audio from a participant as the sound source. Then,
we collect signals at 50, 90, and 120 degrees, both with and without AMS, and apply the MVDR algorithm to
estimate the incident angles. The angle estimation results, as shown in Fig. 5, reveal that the angle spectrum
with AMS almost overlaps with that without AMS, demonstrating the minimal impact of AMS on low-frequency
sounds. More detailed evaluations are presented in Sec. 5.1.4. We observe that the existence of AMS has a
negligible impact on the angle estimation of low-frequency sound. The reason behind this is that the wavelength
of human speech significantly exceeds the internal path length of the unit cell, making the phase delay introduced
by AMS negligible. For inaudible sound, the wavelength is comparable to the internal path length of the unit
cell, such that the phase delay introduced by AMS is significant and can be used to encode spatial features for
inaudible sound. Next, we require leveraging AMS to encode the inaudible sound for each incident angle as its
unique feature, and design algorithms to support accuracy and high-resolution AoA estimation, even with a large
separation of microphone arrays.
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3 METAANG DESIGN

3.1 Design Overview
The primary objective of MetaAng is to address the challenges associated with AoA estimation for inaudible
sounds, particularly when using a sparse microphone array such as a COTS smart speaker. The key innovation
lies in harnessing the spatial encoding capability of a passive shell, also known as an acoustic metasurface, to
mitigate ambiguities in the AoA estimation of inaudible sounds without compromising the spatial perception
performance for low-frequency speech. The design overview of MetaAng is illustrated in Fig. 6. The smart speaker
simply invokes the standard speech processing module (e.g., speech direction estimation) for speech signals,
because the passive shell minimally affects low-frequency speech. In contrast, for inaudible sounds, MetaAng
incorporates two critical modules to achieve unambiguous AoA estimation, even with a significantly larger
inter-element separation. These modules involve (i) encoding incident angle features using a passive shell and
(ii) estimating AoAs with an Unrolling Soft Thresholding Network (USTNet). Specifically, MetaAng implements
three key design elements to optimize performance. Firstly, we optimize the passive shell’s configuration by
considering the impact of frequency diversities, ensuring the collection of the richest spatial features (Sec. 3.3).
Secondly, we introduce a compressive sensing model capable of estimating AoAs in the presence of the passive
structure, making it possible to support concurrent estimation of multiple sources (Sec. 3.2). Thirdly, we enhance
angular resolution by incorporating a neural-enhanced prior in the unrolling neural networks (Sec. 3.4). The
last two design elements are seamlessly integrated into an explainable USTNet to infer AoAs from the spatially
encoded features. This comprehensive approach ensures optimal performance in resolving AoA ambiguities
while maintaining high-quality spatial processing capabilities of microphone arrays for low-frequency speech.

3.2 Angle Estimation Model with Acoustic Metasurface
In order to understand how to deduce the arrival angle using an AMS, we construct a basic angle response model.
As shown in Fig. 7, we consider a receiver in free space, which consists of anAMS and𝑀 microphoneswith a known
geometric configuration. We define the distribution of the incident waves’ angles as 𝜃 = [𝜃1, 𝜃2, · · · , 𝜃𝑁 ]𝑇 ∈ R𝑁×1.
Each element 𝜃𝑖 within this space represents a potential arrival signal from the 𝑖 − 𝑡ℎ direction. The spacing
between adjacent elements Δ𝜃 serves as the receiver’s minimum angular resolution. Therefore, to estimate the
arrival angle, it is essential to determine a vector, called direction profile 𝑥 = [𝑥1, 𝑥2, · · · , 𝑥𝑁 ]𝑇 ∈ R𝑁×1, which
represents the intensity of acoustic waves from all possible directions. If there is a signal from a particular
direction, it will manifest as a corresponding peak in the direction profile.
For simplicity, we assume the presence of only one source in direction 𝜃𝑛 with normalized amplitude (the

subsequent derivation is also applicable to multiple sources). The source under consideration emits at a frequency
𝑓 (e.g., tone signal[63]). Consequently, the value of the 𝑛𝑡ℎ element 𝑥𝑛 in the direction profile should be a peak
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Fig. 7. Theoretical model of using AMS for angle estimation.

exceeding a predefined threshold, while the other elements are close to zero. Considering it as a far-field source
model, the plane wave arriving at the front of the metasurface can then be modeled by

𝑦𝑓 𝑟𝑜𝑛𝑡 = 𝑆𝑥 (3)
where 𝑆 = [𝑠 (𝜃1) sin(𝜃1), 𝑠 (𝜃2) sin(𝜃2), · · · , 𝑠 (𝜃𝑁 ) sin(𝜃𝑁 )] ∈ C𝑃×𝑁 , 𝑃 is the number of the AMS’s cells,

and sin(𝜃𝑛) represents the decomposed incident energy of acoustic waves impinging to the AMS. 𝑠 (𝜃𝑛) =

[1, 𝑒 𝑗2𝜋 𝑑𝑚 cos𝜃𝑛
𝜆 , · · · , 𝑒 𝑗2𝜋

(𝑃−1)𝑑𝑚 cos𝜃𝑛
𝜆 ]𝑇 is the steering vector of direction 𝜃𝑛 , where 𝑑𝑚 is the distance between cells.

After passing through the AMS, the sound field at the back of the metasurface can be denoted by

𝑦𝑏𝑎𝑐𝑘 = 𝐺𝑆𝑥 (4)

where 𝐺 ∈ C𝑃×𝑃 is the transfer function of AMS. Each element in the diagonal of 𝐺 depicts the manipulation of
sound in each cell, while all the non-diagonal elements are set to be zero. The diagonal structure of𝐺 is due to
the fact that each cell only controls the sound waves passing through its chamber and there are no interactions
across different cells. Finally, let 𝐻 ∈ C𝑀×𝑃 denotes the acoustic channel between the AMS and the microphone
array, where𝑀 is the number of microphones. 𝐻𝑖 𝑗 = 𝑎(𝑑𝑖 𝑗 )𝑒− 𝑗2𝜋𝑑𝑖 𝑗 /𝜆 defines the channel from the 𝑖𝑡ℎ cell to the
𝑗𝑡ℎ microphone. 𝑑𝑖 𝑗 is the distance between these two points and 𝑎(𝑑𝑖 𝑗 ) is the attenuation of signal after passing
through this channel. Then the overall response of the microphone array can be modeled as follows:

𝑦 = 𝐻𝐺𝑆𝑥 + 𝜖 = 𝐴𝑥 + 𝜖 (5)

where 𝜖 is Gaussian white noise. 𝐴 = 𝐻𝐺𝑆 ∈ C𝑀×𝑁 is called the measurement matrix and 𝑀 ≪ 𝑁 due to the
limited number of microphones. The property of measurement matrix 𝐴 is mainly determined by the design of
metasurface 𝐺 since the channel 𝐻 and steering matrix 𝑆 can not be tuned. Therefore, the received signals are
determined by the AMS and the angles of arrival (i.e., the direction profile 𝑥 ).

Our Goal. Once the configuration of the AMS is determined (i.e., 𝐺 is known), the measurement matrix 𝐴 can
serve as sampling prior knowledge for inferring the incident angle, since 𝐻 and 𝑆 can be derived from the relative
locations of microphones and the AMS’s cells. Our objective is to utilize the received signal 𝑦 and the predefined
measurement matrix 𝐴 to determine the incident angle from the estimated profile, denoted as 𝑥 .

To solve such a linear inverse problem, a rudimentary response to this issue could be the direct implementation
of the Least Squares (LS) method, formulated as 𝑥 = (𝐴𝑇𝐴)−1𝐴𝑇𝑦. However, the matrix 𝐴𝑇𝐴 typically lacks
invertibility due to the inability of𝑀 microphones to gather sufficient constraints for determining 𝑁 unknowns,
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Fig. 8. Incident angle encoding: (a) concept of incident angle encoding using AMS, while (b) is the amplitude response and
phase response on the receiver.

thereby rendering the inverse problem ill-posed. Alternatives, such as the pseudo-inverse method, which entails
augmenting with a minor full-rank matrix to achieve invertibility, might offer a feasible solution. Nevertheless,
such methods tend to be vulnerable to noise and often struggle to yield accurate outcomes. From a general
perspective, the estimation of the incident angle can be formulated as the following optimization problem:

𝑥 = argmin
𝑥

∥𝐴𝑥 − 𝑦∥22 (6)

In order to achieve accurate angle estimation, we acquire additional information from two aspects to solve
the underdetermined optimization problem in Eq. 6. Firstly, we utilize the diversity of frequency responses and
configurations of AMS to better encode the incident angles, thereby accumulating more constraints for Eq. 6
(Sec. 3.3). Secondly, we explore the prior knowledge of the signal to further reduce the complexity of solving the
optimization problem, such as utilizing the signal’s sparse characteristics in the spatial domain (Sec. 3.4).

3.3 Efficient Spatial Encoding
The angle estimation accuracy of MetaAng is determined by the uniqueness of the incident angle features, where
the efficiency of spatial encoding can be improved by (i) utilizing the frequency diversity and (ii) optimizing the
configuration of AMS.

3.3.1 Utilizing Frequency Diversity. To enhance the effectiveness of the constraints provided by the measurements,
we seek to utilize the frequency diversity of the AMS to increase the number of sampling points for each incident
angle. For incident angle encoding, we arrange the cells linearly to form a 1D AMS, or in a rectangular grid
for a 2D AMS configuration. Such an arrangement enables the modulation of incoming signals from different
directions by introducing specific phase shifts and amplitude changes in each micro-area. In our approach, we
prioritize the use of a regular 2D AMS pattern. Such consideration introduces two primary advantages. Firstly,
the 2D AMS’s ample surface area allows for effective interaction with the incident signals, which is crucial
for modifying the signals received by the microphone. For instance, our signal propagation model simplifies
by considering the signals initially interacting with the AMS and then propagating to the microphone, while
marginalizing the negligible diffraction effects at the AMS’s periphery. Secondly, regarding the far-field model,
although the steering vectors are consistent across each row of the 2D AMS at a given angle, enhancing the
number of rows can improve the encoding ability of AMS in the spatial domain. For the microphones, each unit
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of the AMS effectively acts as an independent near-field source, and the signal received by the microphone is a
superposition of signals from all units of the AMS. Thus, under the excitation of the incident signal, the 2D AMS
structure allows us to encode the amplitude and phase of the signal over a larger spatial range, even though the
steering vectors of each row are similar.

As shown in Fig. 8(a), the AMS can encode the amplitude and phase of incident signals at different frequencies,
creating unique frequency response characteristics as identifiers for each incident angle, also known as sampling
prior knowledge. The role of the AMS is to disrupt the uniformity of phase and amplitude in the signal propagation
process, thereby facilitating effective encoding. Without the AMS, the signals on the AMS plane would maintain
the same (or similar) amplitude and exhibit coherent phase variations upon reaching the AMS, making encoding
ineffective, even with the use of multiple frequencies. Thus, the diversity in the AMS’s frequency response is
crucial for generating distinct frequency responses for different incident angles. Fig. 8(b) illustrates the amplitude-
frequency and phase-frequency responses for various incident angles, highlighting the noticeable differences
across these angles. Through this approach, we can extend the measurement matrix 𝐴 into the frequency domain
to 𝐴(𝐺), adding more constraints, where 𝑓 signifies the encoded frequency index. In our work, we select the
frequency range of 16− 20𝑘𝐻𝑧 since acoustic signals in this band are generally inaudible to most people, and this
range is where our designed AMS exhibits the most ideal response.

3.3.2 Configuration Optimization for Acoustic Metasurface. As previously mentioned, MetaAng has effectively
harnessed the capabilities of the AMS to increase the frequency diversity of incident angle features. The similarity
distribution map between various angle features, as depicted in Fig. 9(a) and Fig. 9(b), clearly demonstrates a
substantial reduction in the degree of similarity among incident angle features configured with AMS compared
to those without AMS. However, upon closer examination, we can intuitively identify that several regions still
exhibit a relatively high level of feature similarity. Furthermore, the presence of broader diagonal areas on the map
indicates the persistent similarity in features between neighboring angle features, which remains the principal
limiting factor affecting estimation accuracy.
One straightforward approach to address this limitation is to consider the use of additional microphones

or larger AMS setups, thereby enhancing our control over the signals. Nevertheless, the former option incurs
additional costs and may deviate from our intended objectives, while the latter, although potentially effective,
raises a significant question: “Have we fully exploited the capabilities of the AMS configuration currently in
use?" Up to this point, our approach has primarily focused on employing randomly generated AMS, which may
not be suitable for arrays with different geometric types shown in Fig. 9(d). To unlock the fully potential of AMS
for incident angle encoding and maintain stable performance across different geometric types, we develop an
optimization algorithm that aims to maximize the encoding capabilities of the current AMS.
We represent the cosine similarity between the 𝑖-th and 𝑘-th incident angle features (i.e., columns of 𝐴(𝐺))

using 𝐺 (𝑖, 𝑘). To comprehensively enhance the distinctiveness among angles while aiming to reduce overall
correlation, the optimization problem can be formulated as min𝑖≠𝑘

∑
𝐺𝑖,𝑘 . Furthermore, we introduce an additional

loss function𝐺𝑚𝑎𝑥 into the optimization process to enhance the minimum differentiation between angles. This
auxiliary loss function serves the dual purpose of constraining the optimization of the AMS configuration and
ensures a baseline performance in angle estimation. Our ultimate optimization problem can thus be defined as:

min
𝑖≠𝑘

∑︁
𝐺𝑖,𝑘 + 𝛽𝐺𝑚𝑎𝑥 (7)

where 𝛽 is the loss weights. The optimization of Equation 7 helps reduce the similarity of features between
various incident angles, so that the algorithm can better identify each angle. The Fig. 9(c) displays the similarity
distribution map of angle features after AMS optimization. It demonstrates the effectiveness of our optimization
algorithm in significantly enhancing the distinctiveness of features between angles, thus unlocking the fully
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Fig. 9. Configuration optimization: (a), (b) and (c) are the angle correlation map for w/o AMS, with random AMS and with
optimized AMS, respectively. (d) is the comparison of angle correlation optimization across different geometric arrays. LA
and SA represent linear arrays and square arrays, respectively. The inter-element spacing for each array is configured for
three typical frequency bands (2k, 4k, 20k).
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Fig. 10. Angle estimation using AMS-enhanced measurement matrix: (a) is the effective rank of measurement matrix,
while (b) and (c) are the estimated direction profile using LS method and ISTA, respectively.

potential of AMS for incident angle encoding. Furthermore, as shown in Fig. 9(d), we can observe that while the
encoding performance of AMS may vary with changes in array types, the optimized AMS significantly reduces
angle correlation and maintains stability.

3.4 Neural-Enhanced Angle Estimation
In this section, we discuss how to solve the underdetermined optimization problem in Eq. 6 and achieve finer
angular resolution.

3.4.1 Conventional Compressive Angle Estimation. The enhanced measurement matrix𝐴(𝐺) using AMS encoding
possesses sufficient constraints (being full rank) to solve Eq. 6, thereby facilitating angle estimation. Generally,
the Least Squares method (LS) is a simple yet effective solver for such a problem. However, in practical angle
estimation scenarios, the LS method encounters difficulties. As illustrated in Fig. 10(b), for a single incident signal
at 60 degrees, LS fails to yield an accurate direction profile. The expected angular peak is almost indistinguishable,
being obscured by multiple ambiguous peak values. This is frustrating as the current full-rank measurement
matrix still fails to be effective straightforwardly. To explore further, we examine the effective rank of the
measurement matrix, defined as the number of singular values occupying 99% of the energy. Fig. 10(a) shows that
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despite A being full rank, its effective rank remains low, with a ratio of less than 10%, known as ill-conditioned.
This analysis reveals the vulnerability of using the LS method and the measurement matrix 𝐴(𝐺 (𝑓 )) to solve for
the direction profile x. Specifically, the low effective rank indicates that the distinctiveness of angular features is
insufficient to offset the disruption caused by noise, leading to significant angular ambiguities when estimating
angles with noisy received signals (e.g., device noise or background noise). This limitation motivates us to consider
designing a more efficient algorithm for stable angle estimation.

Using Sparsity Prior. As mentioned in Sec. 3.2, we partition the available space into 𝑁 angular regions. In
an ideal scenario, we can reasonably assume that the incident sources are sparsely distributed in space. Let 𝐾
represent the number of sources, where 𝐾 << 𝑁 . To mitigate the computational complexity of angle estimation,
we can incorporate this sparsity assumption into our solution algorithm by introducing an 𝐿1 regularization
term, denoted as ∥𝑥 ∥1. By promoting sparsity through 𝐿1 regularization, our goal is to identify the few significant
components in the signal that correspond to the actual incident angles, effectively filtering out noise and irrelevant
data. Subsequently, we can estimate the angles by solving the following problem:

𝑥 = argmin
𝑥

∥𝐴(𝐺)𝑥 − 𝑦∥22 + 𝛼 ∥𝑥 ∥1 (8)

where ∥𝐴(𝐺)𝑥 − 𝑦∥22 computes the error of the reconstructed direction profile and the measurement, controlling
the fidelity of 𝑥 . ∥𝑥 ∥1 =

∑
𝑖 |𝑥𝑖 | is the 𝐿1 norm regularization term, under which we expect the object has a large

number of coefficients that are near zero. Therefore, the 𝐿1-norm imposes sparse constraint to the solutions
and meanwhile, it also ensures the convexity of our optimization model simultaneously. Other regularization
terms with 𝐿𝑝-norm (𝑝 < 1) may lead to better sparse constraints 𝐿1-norm, but they are not convex [40]. As a
result, 𝐿1-norm is one of the most commonly used regularization terms in the various applications of compressive
sensing [57, 61, 62]. 𝛼 is a hand-picked hyper-parameter which controls the importance of the fidelity term and
the sparsity term.

Basic ISTA Solver. The Iterative Soft ThresholdingAlgorithm (ISTA) is a widely employed optimization technique
for solving the optimization problem from Eq. 8. Its effectiveness arises from its ability to promote sparsity
within a signal while maintaining a relatively straightforward iterative structure. At its core, ISTA seeks to find
a sparse representation of a signal by solving an optimization problem that includes an 𝐿1 regularization term.
This regularization term encourages most of the coefficients in the representation to become zero, effectively
identifying the essential components of the signal while suppressing noise and irrelevant data. ISTA operates
through a series of iterations where, in each step, it performs a soft thresholding operation on the coefficients. This
operation shrinks the coefficients toward zero, leading to sparser representations and, consequently, improved
recovery of the underlying signal. Specifically, ISTA solves the compressive angle estimation problem by iterating
between the following update steps:

𝑧𝑘 = 𝑥𝑘−1 − 𝜌𝐴(𝐺)𝑇 (𝐴(𝐺)𝑥𝑘−1 − 𝑦)

𝑥𝑘 = 𝑆𝑜 𝑓 𝑡 (𝑧𝑘 , 𝛼
2
)

(9)

where 𝑘 denotes the iteration index and 𝜌 is the step size. 𝑧𝑘 conducts the gradient descent, while 𝑆𝑜 𝑓 𝑡 (·) is
the soft-thresholding function with the definition as follows:

𝑆𝑜 𝑓 𝑡 (𝑧, 𝜆) =


𝑧 − 𝜆 𝑖 𝑓 𝑧 > 𝜆

0 𝑖 𝑓 − 𝜆 ≤ 𝑧 ≤ 𝜆

𝑧 + 𝜆 𝑖 𝑓 𝑧 < −𝜆
(10)
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where 𝜆 represents the threshold. By using the ISTA solver, we can accurately estimate the precise incident angle.
As shown in Fig. 10(c), a pronounced narrow peak appear at the expected angles, demonstrating the effectiveness
of the sparsity prior the in single-source angle estimation.

3.4.2 Improve Angular Resolution with Neural Prior Enhancement. Our approach relies on the inherent frequency
responses at different incident angles, which serve as critical angle features. The linear superposition property of
MetaAng allows for its seamless extension to angle estimation scenarios involving multiple devices. Consider the
scenario illustrated in Fig. 11(a), where User A possesses two devices requiring precise localization, including
smartphones and smartwatches, while User B is similarly in need of tracking his smartphone. However, empirical
testing results have not aligned with our initial expectations, as depicted in Fig. 11(b). This observation implies
the existence of virtual responses exceeding the actual number of devices(i.e., ambiguities). This phenomenon
can be attributed to limitations in angle resolution, as some angles exhibit similar characteristics. The primary
challenge in multi-device angle estimation here is the naive sparsity prior is insufficient to obtain precise solutions
when dealing with multiple sources. This highlights the need for more sophisticated approaches in handling the
complexity of estimating angles from multiple devices simultaneously.

To enhance MetaAng performance in the context of multiple devices and address the angle resolution challenge,
we propose a neural-enhanced prior approach that learns a data-driven transformation function, ensuring sparsity
in a more general manner. Therefore, we can achieve high performance angle estimation for multi-sourses and
substantial improvements in the system’s angle resolution, as visually represented in Fig. 11(c).
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Fig. 13. Experimental setup of MetaAng.

To be specific, we propose an Unrolling Soft Thresholding Network (USTNet) inspired by [64] that leverage
neural-enhanced prior to hold a general sparsity assumption. Specifically, we incorporate a learnable module
into the optimization problem for compressive angle estimation. Consequently, we need to solve the following
problem:

𝑥 = argmin
𝑥

∥𝐴(𝐺)𝑥 − 𝑦∥22 + 𝛼 ∥F (𝑥)∥1 (11)

where F (·) represents a learnable transformation function, we have incorporated the addition of two 1D
convolution layers and a ReLU layer to enhance the sparsity of non-linear transformations. In order to further
boost the algorithm’s inference capabilities, we propose the expansion of the iterative algorithm, treating each
iteration as a layer composed of learnable computational modules. Consequently, the inference process for each
iteration is illustrated in Fig. 12, and it can be solved in closed form, as outlined below:

𝑥𝑘 = F̃𝑘 (F𝑘 (𝑆𝑜 𝑓 𝑡 (𝑧𝑘 , 𝜆𝑘 ))) (12)

F̃𝑘 (·) is the left-inverse version of F𝑘 (·), sharing a similar structural configuration. The threshold 𝜆𝑘 and the
step size 𝜌𝑘 can be learned to adapt to varying requirements at different stages of the inference process. The
unrolled algorithm is achieved by setting a truncation length 𝐾 (or the number of stages). To summarize, for
any given inference layer (or iteration), its set of learnable parameters is denoted as Θ𝑘 = {𝜆𝑘 , 𝜌𝑘 , F𝑘 (·), F̃𝑘 (·)},
which can be acquired from real-world scenarios to ensure a stable neural-enhanced sparsity prior. Our final
angle esimation algorithm consists of 𝐾 concatenated unrolling layers.

4 IMPLEMENTATION
As depicted in Fig. 13(a), we develop a testbed using the commercial Bela platform [6]. Our system comprises
a microphone array, an 3D-printed AMS, sound sources, and a Bela development board as the controller, as
shown in Fig. 13(b). The geometric configuration of the microphone array is restructured through a 3D-printed
panel. Unless otherwise stated, we maintain a square array of four microphones with a spacing of 4.25 cm
optimized for 4kHz. We strategically place the AMS 3 cm in front of the microphones, aligning its center with the
microphone array’s center to ensure most signals pass through the AMS before reaching the microphones. The
AMS fabricated following the optimized guidelines from Sec. 3.3.2, is shown in Fig. 13(c). We optimize AMS using
the Adam optimizer in PyTorch, which does not require any dataset for this optimization step and can achieve
quick convergence (less than 1 minute). Our AMS design is a 16 × 16 grid, consisting of 256 units, with each unit
having 16 selectable states, as detailed in [71]. The AMS is manufactured using a commercial 3D printer. The
printing cost is about 5 dollars, and the cost will be significantly reduced with mass production.
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Fig. 14. Overall performance of incident angle encoding. (a)-(c) is the correlation distribution of measurement matrix
collected by testbed, and (d) is the angle estimation across various number of microphones using one source.

For algorithm configuration, we set a sound source to emit chirp signals ranging from 16 to 20 kHz at 1 degree
intervals within a 0 to 180 degree range relative to the AMS. The period of the signal is 100ms, with a single
chirp being transmitted for 40ms. Once the receiver receives the signal, it first passes through a bandpass filter
to capture signals within the frequency band of interest, and then performs an FFT on the chirp within one
period to obtain the spectral information of the signal. We collect these signals five times at varying distances,
from 50 to 200 cm in 50 cm intervals. Then, we evaluate the performance of USTNet by employing five-fold
cross-validation on the five sets of collected data. Moreover, the collected data at different angles and distances
are linearly superimposed to simulate multi-source incidence scenarios, forming our training dataset. Specifically,
we consider scenarios where the number of sources ranges from 1 to 5, ensuring that the amount of data for each
scenario is consistent, meaning that our final dataset consists of 4 × 181 × 5 × 5 = 18100 entries. We collect data
an additional time at a distance of 100cm to calibrate the measurement matrix A, which contains a total of 181
columns, each representing the spectral features of its corresponding angle. This step is necessary because the
manufacturing errors of the AMS may lead to significant discrepancies between simulations and actual results.
We set the number of stages in the USTNet to 10 and train our algorithm using the Adam optimizer on a server
equipped with an NVIDIA GTX 3090 GPU. The total optimization time takes 1.3 hours. We test the inference
latency of USTNet on a MacBook Pro laptop with Intel Core i5 and recorded it as 12.3 ms. Notably, our algorithm
requires training only once unless the AMS or microphone array geometry changes.
Baseline. We choose four classic angle estimation algorithm as baselines, including DAS [7], MVDR [53],
ESPRIT [20], and MUSIC [39]. DAS is a basic beamforming method that aligns and sums sensor signals to enhance
specific direction signals and reduce noise. MVDR adapts to minimize noise while preserving signal quality in
the desired direction. ESPRIT estimates multiple signal directions using rotational invariance of signal subspaces.
MUSIC, a high-resolution technique, identifies wavefront directions by analyzing signal frequency and exploiting
signal and noise subspace orthogonality.

5 EVALUATION

5.1 Overall Performance
To thoroughly evaluate the performance of incident angle encoding, we explore three distinct configurations: (i)
without any AMS, (ii) with a randomly generated AMS, and (iii) using our specially optimized AMS. Initially,
we capture the characteristic feature of each angle at 1-degree intervals using our testbed. We then analyze
the statistical distribution of the correlation between these encoded features at various angles, as illustrated
in Fig. 14(a) to 14(c). The median absolute correlation of features across angles in configurations (i), (ii), and
(iii) are found to be 0.71, 0.28, and 0.16, respectively. The distribution of angle feature correlation using the
optimized AMS centers around zero and displays a slight standard deviation, a trait known to be advantageous
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(a) Estimated directional spectrum using ISTA.
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(b) Estimated directional spectrum using USTNet.

Fig. 15. AoA estimation performance under different source angle spacing between traditional ISTA and USTNet.

for solving compressive sensing problems, as mentioned in [5]. Generally, smaller average correlations indicate
stronger specificity between angular features. To visually demonstrate the effectiveness of the AMS, we assess its
performance in angle estimation with a single incident source. Fig. 14(d) shows that without the AMS, even after
employing multiple sub-frequencies, there is a significant error in angle estimation, heavily dependent on the
number of microphones. Introducing a random AMS considerably reduces this angular error by 44.8%, 44.6%, and
48.72%, respectively, when using 2, 3, and 4 microphones compared to the scenario without AMS. We observe that
increasing the number of microphones enhances the effectiveness of the AMS. This improvement is attributed
to the distinct roles played by the quantity of microphones and frequency encoding. Moreover, compared to
configurations without an AMS, the optimized AMS notably reduces the angular error by 86.97%, 87.51%, and
89.29%, respectively. Experimental results demonstrate that employing the optimized AMS for incident angle
estimation substantially decreases the dependency on the number of microphones. It maintains an average error
of just 1.91 degrees, even with only two microphones.

5.1.1 Performance of Multi-Sources. Subsequently, we examine MetaAng’s ability to handle multiple incident
sources using a receiver with four microphones and an optimized AMS. We first test the distinguishability of two
sources at different angular separations. As shown in Fig. 15, as the angle spacing decreases, the two expected
angle response peaks of the traditional ISTA will stick together and produce many ambiguous responses. While
using USTNet, the ambiguity problem is significantly alleviated, and high-quality angular responses are produced.
The results show that our method can achieve an angular resolution of 4 degrees. Then, we verify the impact
of the number of incident sources on the AoA estimation accuracy of MetaAng.We place incident sources at a
fixed 100 cm distance from the receiver, increasing the number of sources from 1 to 5. The angular separation
between these sources varies from 5 to 30 degrees in 5-degrees increments. As shown in Fig. 16, the mean angle
estimation errors for 1 to 5 sources are 1.25, 1.52, 2.24, 3.17, and 4.85 degrees, respectively. Interestingly, despite
using only four microphones, MetaAng successfully estimates up to five incident sources. Traditional angle
estimation methods like MUSIC struggle with underdetermined linear problems, but our approach overcomes
this by using angle encoding and sparsity knowledge. This capability allows for accurate multi-source angle
estimation with limited microphones, which is ideal for smart home environments. It enhances spatial awareness
in smart devices, improving their functionality in intelligent settings.
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5.1.2 Performance on Various Array Geometry. Moreover, we demonstrate that MetaAng also reduces the con-
straints of array geometry and compare it with baseline angle estimation algorithms. These algorithms require a
half-wavelength spaced array for accurate angle estimation, failing which they encounter destructive ambiguities.
To validate this, we evaluate the angle estimation performance for two incident sources on four different geometric
arrays, each comprising four microphones, as depicted in Fig. 17. For each geometric array, we recollect datasets
to calibrate the measurement matrix and train USTNet. For testing, we only consider the scenario of two sources
to simplify the influence of other factors. The array geometries include linear and square arrays for 4kHz and
20kHz frequency bands, respectively. As shown in the experimental results in Fig. 18, MetaAng demonstrates
similarly low estimation errors across the four geometric arrays, with errors respectively at 1.89, 1.74, 1.61,
and 1.53. In contrast, the performance of traditional algorithms shows sensitivity to the array geometry. With
square arrays, where only two microphones are available in the azimuth direction, traditional super-resolution
angle estimation algorithms struggle, showing nearly unusable performance regardless of whether they meet
the half-wavelength element spacing. With linear arrays, where four microphones are available in the azimuth
direction, the non-compliance with half-wavelength array geometry leads to angle estimation errors close to 30
degrees, and the performance among the algorithms does not show significant differences due to the presence
of ambiguities. When the linear arrays comply with half-wavelength spacing, traditional algorithms function
correctly, with angle estimation errors for the four algorithms at 8.37, 4.63, 3.99, and 2.97. Despite considerable
improvements, our method still reduces the error by 53.9% compared to the best-performing MUSIC algorithm.
Overall, our method is insensitive to the geometric construction of the array. A primary reason is that our AMS
can be optimized according to the array’s geometry, and it does not rely on strict phase delays between elements
to estimate angles but extends the frequency dimension as an additional feature. This characteristic allows our
system to seamlessly adapt to various commercial geometrically heterogeneous microphone arrays without
affecting the microphone array’s optimization for low-frequency voice applications.

5.1.3 Comparison with Various Compressive Sensing Algorithms. Our approach is compared with three classic
compressive sensing algorithms: the original ISTA, Approximate Message Passing (AMP), and the Alternating
Direction Method of Multipliers (ADMM), in estimating the incident angles of two sources using the same
measurement matrix. As shown in Fig. 19, the results indicate improved performance across all algorithms with
an increased number of microphones. Our method consistently yields the lowest error, achieving an average
error reduction compared to ISTA, AMP, and ADMM by 81.2%, 79.0%, and 73.5%, respectively. This improvement
is credited to additional learnable modules integrated into our solution process, which enhance priors through
neural networks and utilize learned hyperparameters for superior denoising. These results verify that our design
leads to more precise angle estimation using the same incident angle encoding.
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Fig. 20. Impact of AMS on acoustic sensing: (a) and (b) are the low-frequency sound angle estimation and transmission
attenuation, respectively. (c) and (d) are the high-frequency acoustic transmission attenuation and distance estimation,
respectively.

5.1.4 Effects on the Functionality of Low-Frequency Sound. A fundamental premise of our system design is
not to adversely affect low-frequency usage. We assess the effect of the AMS on low-frequency applications,
mainly focusing on voice incident angle estimation and AMS’s influence on low-frequency energy transmission.
Employing a four-microphone linear array designed for 4kHz, we estimate the angle of an incident source
emitting a pre-recorded human voice. According to the results shown in Fig. 20(a), AMS has negligible impact on
low-frequency voice angle estimation due to its minimal response to these frequencies. Additionally, we evaluate
how AMS affects the transmission rate of low-frequency voice, playing the same voice from various directions.
The energy attenuation, depicted in Fig. 20(b), shows an average of only 0.61 dB with AMS, a marginal level
unlikely to affect human voice frequency applications significantly. Overall, our experiments confirm that AMS’s
presence has little effect on low-frequency voice, highlighting its potential for seamless integration with existing
voice systems and opening up possibilities for exciting new applications.

5.1.5 Effects on the Functionality of High-Frequency Acoustic Sensing. Another aspect worthy of attention is the
impact of the AMS on high-frequency sound waves. First, we examine high-frequency sound wave transmission
(close to 20KHz) through AMS, as depicted in Fig. 20(c). Our AMS is designed to respond significantly to high-
frequency sounds, resulting in an average energy loss of 1.83 dB. This loss could slightly reduce the effective range
of acoustic perception in the air, but it is minor compared to the gains in incident angle estimation performance.
Further, we explore AMS’s impact on high-frequency sound wave distance estimation, a crucial perceptual metric.
We measure the distance estimation of a sound source emitting chirp signals from 16-20kHz across distances of
5 to 200cm in 5cm intervals. As shown in Fig. 20(d), AMS’s presence scarcely affects distance perception. This
negligible impact arises because chirp signal-based distance estimation relies on the different frequencies of
mid-frequency signals unaffected by AMS. Consequently, we can maintain accurate distance estimation while
using AMS to improve the spatial perception of high-frequency sound waves.

5.2 Micro Benchmark
In this section, we focus on factors critical to our system’s performance. This includes elements influencing
the measurement matrix, such as frequency bandwidth, metasurface properties, and the distance between the
metasurface and microphones. We also examine the impact of the number of layers in the unfolding algorithm
stages, which is important for convergence.

5.2.1 Impact of Frequency Bandwidth. The frequency bandwidth directly impacts the number of rows in the
measurement matrix. We investigate the effects of a 4kHz bandwidth, ranging from 20kHz to 16kHz. As shown in
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Fig. 21, without AMS, increasing frequency bandwidth does little to improve angle estimation due to frequency
coherence, which prevents them from acting as independent features. Therefore, a wider bandwidth does not
significantly enhance angle-specific feature information. Conversely, using any metasurface, even a random one,
increasing bandwidth improves the differentiation of incident angle features, thanks to the metasurface’s inherent
properties. With an optimized AMS, the expanded frequency bandwidth results in substantially improved angle
estimation, which is evident in significantly lower errors than a random AMS. These findings highlight the
importance of AMS, especially optimized ones, in leveraging increased frequency bandwidth to enhance angle
estimation accuracy and resolution, contrasting with AMS-less systems where more bandwidth is needed to lead
to better angle discrimination.

5.2.2 Impact of AMS Size. We investigate the impact of AMS size on the measurement matrix. The size of the
AMS, determining its number of reconstructable units, directly influences the generation of the measurement
matrix. Our exploration of angle estimation performance encompasses four different AMS sizes: 16 × 16, 12 × 12,
8 × 8, and 4 × 4. For each AMS size, we recollect data according to the method described in the implementation
section to recalibrate the measurement matrix A and to train and evaluate the performance of USTNet. The results
presented in Fig. 22 show that AMS size directly affects angle estimation performance. Generally, larger AMS units
yield better performance. However, excessively large AMS sizes can incur higher costs and may be impractical
for compact devices like smart speakers. Conversely, smaller AMS sizes have limited signal customization
capabilities and pronounced diffraction effects at the edges, which can affect signal modulation before reaching
the microphones. Therefore, selecting an AMS of appropriate size is crucial. It should be large enough to ensure
accurate angle encoding and estimation yet compact enough for practical integration into various devices. This
balance is essential for maximizing the AMS’s angle estimation effectiveness while maintaining its practicality
for broad application.

5.2.3 Impact of Distance between AMS and Microphone. In practical deployments, the distance between the AMS
and the microphones is critical but often overlooked. The AMS should be close enough to the microphones to
satisfy near-field conditions yet far enough to ensure that the microphones receive adequate energy from all cells.
We optimize the AMS at distances from 1 to 6 cm and assess its angle estimation error. Results shown in Fig. 23
indicate that a 3 cm distance provides the best performance. Closer and further distances reduce AMS performance
in encoding incident angles. Notably, decreasing the distance between the AMS and the receiver leads to a quicker
drop in performance, especially because signals from cells at the AMS edges struggle to reach the microphones at
closer distances. For effective integration of AMS in applications, maintaining an ideal distance of about 3 cm in
front of the microphones is essential. This distance optimally balances angle encoding performance and effective
signal capture by the microphones.
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5.2.4 Impact of Number Layers for USTNet. We investigate the impact of the number of layers (iterations) in
the unfolding algorithm, as depicted in Fig. 24. When the number of layers K is relatively tiny (less than 6), the
algorithm remains unconverted, resulting in higher average angle estimation errors and standard deviations.
Setting K to 10 typically leads the USTNet to reach convergence, and further increasing K does not significantly
improve angle estimation accuracy. For balancing computational load with accuracy, we find that a setting of
𝐾 to 10 is sufficient for most angle estimation tasks. This setting strikes a practical balance, ensuring effective
and efficient algorithm performance without excessive computational complexity while delivering reliable angle
estimation. This approach is ideal for real-world applications where accuracy and computational efficiency are
crucial.

5.3 Robustness Analysis
5.3.1 Impact of Device Mobility. Device mobility is essential for practical angle estimation. We vary the distance
between the source device and the AMS to test the stability of angle estimation performance at different distances.
A device emitting signals at two different volumes is moved from 10 to 300 cm, with tests conducted at 10-degrees
intervals within a 0 to 180-degrees range. The results, shown in Fig. 25, indicate a slight drop in angle estimation
performance when the sound source is at 10 cm, likely due to far-field modeling distortion from the sound source
being too close to the receiver. As the distance increases, the angle error first decreases and then rises, with
the error increase at longer distances attributed to a lower signal-to-noise ratio (SNR) of the received signals, a
situation exacerbated by lower volumes. However, at high volumes, our system can achieve an angle estimation
error of less than 2.67 degrees even at 300 cm, aligning with the expected working distance for most active
acoustic perception applications, demonstrating the system’s robustness and adaptability to varying distances in
practical scenarios.

Given the mobility of sound source devices, their relative height to the receiver often varies. We place the sound
source device at various heights to assess our system’s performance with sound sources at different heights. The
experimental results shown in Fig. 26 indicate that varying heights of the sound source can lead to a slight loss in
angle estimation performance, resulting in a fluctuation in average angle estimation error ranging from 1.52 to
2.59 degrees across a height range of −40cm to 40cm. Currently, our system primarily focuses on azimuth angles
in its estimations. However, the elevation angle (pitch) also has a corresponding response, a crucial direction for
our future exploration.

5.3.2 Environment Migration. We test the robustness of our well-assembled and trained system across different
environments. To do this, we evaluate our testing platform, initially set up in an office, directly in three other
distinct environments without any extra adjustments. These environments are a bedroom, a parlor, and outdoors.
The experimental results, shown in Fig. 27, indicate that the system maintains stable performance in these
varied settings, with only a minor deviation in average error of 0.051 degrees. This robust performance is due to
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Fig. 29. Performance of device localization. (a) and (b) are the outdoor and indoor setups, respectively. (c) shows the mean
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Fig. 30. Performance of MetaAng in acoustic tracking. (a) represents the tracking setup. (b) and (c) show the tracking results
using a single source from User 1 and User 2, respectively. (d) illustrates the tracking result using two sources simultaneously
from User 1 and User 2.

the angle encoding being solely reliant on the response of the AMS and microphones to the incident signals,
independent of the environment. This feature allows our system to seamlessly deploy in various environments
without additional costs for environment-specific adaptations. Such environmental independence is a significant
advantage, ensuring the system’s effectiveness in a wide range of real-world applications without requiring
frequent recalibration or reconfiguration to suit different settings.

5.3.3 Types of Commodity Devices. We compare the impact of different sound source devices, selecting five
commercial devices for evaluation: Google Nexus 5, Honor Magic3, Samsung S8, iPhone 11, and Watch S5. The
experimental results, presented in Fig. 28, reveal that each device achieves average angle estimation errors of
1.17, 1.26, 1.22, 1.26, and 1.78 degrees, respectively. We note that smartphones maintain stable angle estimation
performance. Smartwatches, while slightly less accurate than smartphones, still perform within a low error range,
likely due to their limited sound volume output. These results demonstrate that our system is compatible with
various commercial devices and consistently maintains stable performance in angle estimation. This versatility
and reliability are vital for the practical application of our system across diverse environments, accommodating
different types of sound source devices.

5.4 Case Study
In this section, we present the performance of MetaAng in practical applications, including localization and
tracking.
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5.4.1 Localization. We investigate the localization capabilities of MetaAng for both single-device and multi-
device scenarios in diverse environments, specifically indoor and outdoor settings as illustrated in Fig. 29. In the
single-device scenario, we use one smartphone, and in the multi-device scenario, we use two smartphones. For
each scenario, we predefine the devices’ initial positions as the origin and estimate their positions at 50 different
points to calculate the error. The results detailed in Fig. 29(c) indicate that despite the higher indoor positioning
error due to complex multipath environments, MetaAng achieves acceptable indoor positioning errors for both
single and multiple devices, with average errors of 2.62 cm and 3.51, respectively. This performance underlines its
suitability for a broad range of localization applications, demonstrating its robustness and reliability in varying
environmental conditions.

5.4.2 Tracking. We develop a simple 2D air drawing interface using MetaAng. Fig. 30 (a) depicts the tracking
setup, a small speaker is attached to the end of an Apple Pencil, with an iPad serving as the canvas for ground truth.
We invite two participants to draw images on the iPad to assess the tracking capability of MetaAng. Furthermore,
we ask them to draw simultaneously on two iPads to evaluate the multi-source tracking performance. As shown
in Fig. 30 (b)-(d), the images drawn by MetaAng almost completely overlap with the ground truth, demonstrating
its high precision in tracking. Moreover, MetaAng’s ability to perform multi-source tracking with a single
microphone array holds promise for a wide array of applications, such as human pose estimation and VR/AR.

6 DISCUSSION AND FUTURE WORK

6.1 2D Angle Estimation
We currently focus on azimuthal angle estimation, but elevation angle estimation is equally essential for scenarios
requiring 3D positioning or imaging. Elevation angle estimation can be approached using a method similar to
that for incident angle encoding, effectively increasing the number of unknowns in the measurement matrix.
One potential solution is using more finely quantized AMS units, such as expanding from 16 to 32 options and
enhancing the AMS’s control over incident signals. Additionally, we are considering more efficient compressive
sensing algorithms to handle a more significant number of unknowns under conditions of rank deficiency in the
measurement matrix, which is one of our future work directions.

6.2 Energy Attenuation
The presence of AMS results in a slight energy attenuation in acoustic signals, which is nearly unavoidable.
Our experiments have shown that this loss increases from low to high frequencies, leading to concerns about a
reduction in acoustic sensing distance. The effect of AMS is minimal on low-frequency voices, but it is evident
that the degree of attenuation varies in different directions, with the most severe attenuation occurring in the
direction perpendicular to AMS. This necessitates the consideration of AMS’s impact when designing spatial
audio services for smart speakers, such as for AR/VR applications. On the other hand, although the energy
attenuation of high-frequency inaudible sound signals is close to 2dB, because humans are less sensitive to these
frequencies, it is possible to increase the perceived distance by raising the volume. Another potential approach is
to use advanced signal processing techniques to improve the signal-to-noise ratio of microphones, which will be
a part of our future work.

6.3 Extending to Passive Sensing
Many applications based on inaudible acoustic signals have been proposed, primarily categorized into active
and passive sensing. Active sensing methodologies are centered around using the receiver end to discern the
transmitting device’s state, such as its position. In contrast, passive sensing revolves around extracting target
information from signals backscattered by objects independent of the signal source. Although our current angle
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estimation method primarily concentrates on active acoustic perception, its principles apply equally to passive
sensing applications. Moving forward, we intend to expand the scope of our proposed methodology to encompass
passive acoustic sensing applications, thereby contributing more holistically to the evolution of the acoustic
perception research community.

6.4 User Friendliness of the Selected Frequency Band
In this work, we choose the frequency range of 16kHz to 20kHz, as many studies have shown that the majority of
people might be insensitive to this frequency range. However, this might not apply to children or pets, especially
since the modulation of chirp can lead to severe discomfort. There are a few potential solutions, one of which
is using higher frequency acoustic sensing. Some advanced smart speakers are equipped with higher sampling
rates, such as 192kHz [43], allowing for acoustic perception that is transparent and friendly to humans on higher
frequency bands. Another solution is to adopt certain user-friendly special modulation methods, such as white
noise modulation [49], which allows people to hear the sound without discomfort.

7 RELATED WORKS
Our work intersects with the following areas: This section presents some advances related to our works, including
spatial perception of speech, acoustic sensing and angle estimation, and acoustic metasurface.

7.1 Human Sound Spatial Perception
The human auditory system (made up of two ears) allows a person to naturally discern the general direction of
a sound source even in a noisy environment, which is also known as the cocktail party problem [17]. Inspired
by this, researchers have developed various voice-based applications using microphone arrays, such as sound
source localization [12, 47], speech enhancement [8, 69], and speaker extraction [72]. Though there also exist
some works [28, 30] on single-channel speech applications based on deep learning, this is beyond the scope
this paper. Compared with the single-channel system, the human auditory system (two channels) can collect
spatial diversities, while more channels (such as an array with more than 2 microphones) can further improve
the performance of these applications [45]. However, the performance of aforementioned applications mostly
relies on the number of microphones and the inter-element spacing, while the commercial products tend to
reduce the number of microphones to save cost and space (e.g., 4 microphones for Apple HomePod 2nd [1] and 3
microphones for Google Nest Mini [2]). Therefore, it is important to ensure the inter-element spacing of COTS
smart speakers is large enough to collect spatial diverse features.

7.2 Acoustic Sensing and Angle Estimation
Wireless sensing has recently attracted significant attention in research community, and lots of innovative
sensing algorithms and systems have been developed. Wireless signals with various modalities are explored
for sensing/tracking, including acoustic [13, 55, 70, 71], WiFi [38, 48], RFID [16, 51], UWB [67], and mmWave
signals [59]. Among these modalities, acoustic tracking using ultrasound signals only requires widely available
speakers and microphones, while the other modalities require specialized and expensive hardware[32, 65].
Generally speaking, there are two types of ultrasonic acoustic tracking: (i) displacement tracking and (ii) AoA
estimation. The former tracks the fine-grained displacement change of the target [56, 65], thus enables applications
such as finger tracking [37] and gesture recognition [36]. The latter estimates the AoAs of the acoustic signal and
enables applications such as localization [41] and spatial filtering [60]. Combining the techniques of displacement
tracking and AoA estimation can further lead to room-scale tracking [34], multi-target tracking [22], and acoustic
imaging [33]. As a consequence, the performance of AoA estimation is crucial for ultrasound acoustic sensing.
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There are several AoA estimation algorithms using microphone arrays, including the intuitive conventional
beamforming (CBF) [7], the minimum variance distortionless response (MVDR) [53], and the subspace-based
supersolution methods [20, 39], etc. These approaches are widely used to improve the accuracy and resolution
of AoA estimation, but their performance will be significantly decreased with sparse microphone arrays with
ambiguity angles. Researchers attempt to cope this issue by using nonlinear array geometries [53], distributed
microphone arrays [27], and utilizing the frequency diversities [21]. However, for ultrasonic acoustic tracking,
the above solutions are not applicable to COTS smart speakers, due to the limited product size, number of
microphones, and available bandwidth for inaudible sounds.

7.3 Acoustic Metasurface
Acoustic metasurfaces have been extensively studied for their versatile manipulation of acoustic signals, driving
progress in communication [71], imaging [29], and noise reduction [14] applications. Broadly categorized as
active [46] and passive [35], active AMS often involves intricate structures, leading to higher costs and larger
sizes. In contrast, passive AMS, celebrated for their simplicity and ease of fabrication, have gained considerable
attention, notably through techniques like 3D printing. Common designs for passive AMS units include coiled
structures [9], Helmholtz resonators [73], and membrane structures [19]. Opting for coiled passive structures in
our approach stems from their cost-effectiveness and practicality, in contrast to the more complex Helmholtz
resonator structures and the manufacturing challenges associated with membranes. The utilization of coiled
structures allows us to exert control over the phase of incoming acoustic signals by manipulating the lengths of
coiling paths within each unit. This method proves crucial in applications like beamforming, where adjusting the
coil paths across all units compensates for phase variations in the input signal. Our focus diverges from previous
research primarily concentrated on cell design and signal-to-noise ratio enhancement, as evident in [35] and [71].
Instead, our primary interest lies in harnessing AMS for incident angle encoding, with the goal of significantly
enhancing angle estimation performance.

8 CONCLUSION
This paper introduces MetaAng, a system that achieves high-accuracy angle estimation of inaudible ultrasonic
signals using a passive structure and a small number of microphones, while retaining microphone arrays’ low-
frequency sound spatial perception ability. MetaAng integrates an acoustic metasurface to enhance the uniqueness
of incident angles through frequency diversity and configuration optimization. Moreover, MetaAng introduces
USTNet, incorporating two key technologies, i.e., compressive sensing and neural-enhanced priors, to improve
the resolution and accuracy of angle estimation in multiple acoustic sources. The experimental results under
various conditions and scenarios indicate that MetaAng demonstrates high precision and robust angle estimation
performance, offering unique insights for applications based on inaudible acoustic spatial perception.
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