IEEE INTERNET OF THINGS JOURNAL, VOL. 12, NO. 16, 15 AUGUST 2025

32875

Amser+: Accelerating Mobile Speech Emotion
Recognition in IoT Environments With
Mel Feature Compression

Yu Lu™, Graduate Student Member, IEEE, Ran Wang, Dian Ding

Yongzhao Zhang™', Member, IEEE, Lanqing Yang

, Member, IEEE, Yijie Li*, Member, IEEE,
, Member, IEEE, Yi-Chao Chen, Member, IEEE,

and Guangtao Xue™, Member, IEEE

Abstract—Speech-based interaction systems are widely used
in mobile devices like smartphones. With advances in deep
neural networks, tasks, such as speech emotion recognition (SER)
enhance these systems’ user-friendliness. However, deploying
SER models on mobile devices is challenging due to their
complexity and computational demands. While pruning can
reduce complexity, it often compromises accuracy, and hardware
accelerators like FPGAs are difficult to integrate into mobile
devices. This article proposes Amser+, a real-time SER frame-
work using signal compression and task offloading. Amser+
utilizes logarithmic Mel-filter bank coefficients (Fbank) and
singular value decomposition (SVD) for feature extraction and
compression. The compressed signal is only 6.25% of the
original size, achieving 2.24x faster transfer rates and 55.35%
energy savings compared to raw audio transmission. Despite the
compression, the features preserve key audio information for
text and emotion recognition, performed server-side. Experiments
show a WER of 4.68% (Librispeech), 10.69% (CommonVoice),
and 72.85% emotion recognition accuracy (IEMOCAP).

Index  Terms—Feature emotion

recognition (SER).

compression, speech

I. INTRODUCTION

PEECH is a prevalent interaction method in smartphones,
stereos, and other IoT devices. The global speech and
voice recognition market is expected to grow from $12.62
billion in 2023 to $59.62 billion by 2030 [1]. Unlike text,
speech carries richer information, such as emotion [2] and
gender [3], [4]. Emotion recognition, in particular, enables
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intelligent systems to offer more personalized services [5]. For
instance, in-car assistants monitor driver alertness and stress
through speech, while smart customer service systems adjust
their responses based on user emotion. In home healthcare set-
tings, speech-based monitoring is increasingly used to detect
mental health states or emotional fluctuations in elderly users.
These scenarios require not only accurate emotion recognition
but also low-latency and high-energy efficiency, given the
constraints of mobile or embedded edge devices.

However, deploying real-time speech emotion recogni-
tion (SER) systems on such devices remains challenging.
Deep neural networks [6], [7], [8], while accurate, are
resource-intensive and typically require significant compu-
tational power, storage, and thermal headroom—resources
that are often lacking in mobile environments. Moreover,
applications, such as voice assistants and in-car systems
are highly sensitive to latency (e.g., responses must occur
within 200-250 ms [9], [10], [11]), while also operating
in noisy and bandwidth-constrained environments. Although
researchers have reduced model complexity on mobile
devices using techniques like branch pruning [12], weight
sharing [13], tensor quantization [14], and knowledge distil-
lation [15], [16], [17], these often reduce accuracy. Hardware
solutions like GPUs [18], FPGAs [19], and ASICs [20], [21]
improve computational capacity but are difficult to deploy on
mobile devices due to size and power constraints.

We propose Amser+, a distributed SER framework using
signal compression. Rather than compressing raw audio
directly, Amser+ shifts the compression focus to the Mel-
spectrogram domain, which serves as the primary feature in
most downstream speech tasks. On mobile devices, the system
computes Mel-filter bank (Fbank) coefficients and applies
singular value decomposition (SVD) [22] to extract compact,
low-rank representations. This strategy reduces the feature size
to only 6.25% of the original audio, significantly lowering
transmission and storage demands while preserving percep-
tually relevant emotional cues. Deploying real-time speech
applications on mobile devices faces several challenges. First,
mobile devices have limited computing power, making it hard
to support complex neural networks. Second, IoT devices like
smart speakers lack storage for long-term audio data and large
models. Lastly, current emotion recognition models rely solely
on dataset knowledge, limiting their accuracy.
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We propose Amser+ to address these challenges by cre-
ating a real-time SER framework for mobile devices and
servers. The system offloads deep neural network tasks to
servers, reducing the computational and storage burden on
mobile devices. It also compresses speech signals using Fbank
features and SVD, minimizing storage needs. Contemporary
methods [23], [24], [25], [26], [27], [28] commonly use neural
networks for emotion recognition, feature extraction, and data
classification. Building on these approaches, we propose a
novel multimodal model for emotion recognition. We first
apply automatic speech recognition (ASR) [6] to convert audio
signals into text. We incorporate external knowledge using a
pretrained RoBERTa model to enhance emotion recognition
accuracy further. Additionally, we employ text embeddings
for extracting emotion-related features from the Chinese text
and use a co-attention mechanism to fuse multimodal features
effectively. Given the imbalanced distribution of emotion
data in current datasets, such as interactive emotional dyadic
motion capture (IEMOCAP) [29], and the fact that a single
audio sentence may contain rich emotional expressions that
a single emotion label cannot fully capture, we address
these challenges by employing a MoCo-based [30] contrastive
learning approach to train our model. This method helps
improve the model’s performance by better capturing the
nuanced emotional information in the data.

Extensive experiments demonstrate the feasibility of deploy-
ing a real-time SER system on mobile devices. The key
contributions of this article are as follows.

1) We propose Amser+, a SER system for edge mobile
devices. Unlike traditional systems that offload all com-
putations to the server, Amser+ reduces transmission
latency and optimizes resource usage on edge devices.

2) We propose a feature extraction and compression mod-
ule for audio signals, optimized for mobile devices.
Using Fbank, the audio is converted into an acoustic
spectrogram, with SVD applied to compress and filter
out high-frequency redundant information.

3) We constructed a multimodal neural network for SER
based on the whisper [6], RoOBERTa [7] models and
MoCo-based training strategy.

4) Extensive experiments show that compared to direct raw
audio transfer, Amser+ improves transfer rates by 2.24 x,
reduces energy consumption by 55.35%, and achieves a
6.25% file compression ratio. On the IEMOCAP dataset,
it achieves 72.85% accuracy and an Fl-score of 0.713.

II. RELATED WORK
A. Real-Time Mobile Computing Applications

Real-time mobile computing has become increasingly
essential for latency-sensitive applications, such as on-device
speech processing [31], [32], [33], affective comput-
ing [34], [35], [36], and human-machine interaction [37],
[38], [39], [40], [41], [42]. Typical examples include
voice-controlled smart home systems [43], where user
commands must be processed with minimal latency; In-
vehicle driver monitoring [44], [45], which requires real-time
analysis of driver behavior to ensure safety; industrial
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equipment monitoring [46], where fault detection and
predictive maintenance rely on rapid local computation;
mobile health systems [47], [48] that continuously track
physiological signals for early warnings; and augmented
reality (AR) [49], [50] applications that demand instant sensor
fusion and feedback. These scenarios [51], [52], [53] illustrate
the growing need for mobile systems that can operate under
strict latency, energy, and connectivity constraints while
ensuring reliable, real-time performance.

B. Deep Neural Network Deployment

Deploying DNN models on edge devices is a common chal-
lenge in Al fields like NLP and computer vision. Solutions,
such as Vigil [54], Reducto [55], Filter-Forward [56], and
Glimpse [57] implement selective data offloading to minimize
latency based on feature type, filtering thresholds, and content.
Cracking open the DNN [58] enhances video analytics through
joint camera-cloud inference and continuous online learning.
Elf [9] improves mobile deep vision by distributing inference
tasks to multiple servers. Remix [59] optimizes object detec-
tion on edge devices with image partitioning strategies under
latency constraints. Amser+ offers a real-time SER framework
via compression and task offloading.

C. Speech Emotion Recognition

SER has been studied for multiple decades within both
the machine learning and speech communities. In alignment
with the prevailing research approach, scholars extract feature
insights from audio data and subsequently employ these
insights across a range of classifiers, including: hidden Markov
models [60], convolutional recurrent network [61], SVM [62],
hierarchical binary decision tree [63], gaussian mixture [64],
nerual network [65]. Much of the aforementioned works relied
on context to furnish additional information for correcting
and inferring emotional content extracted from the data. The
mining and analysis of emotional information from single-
sentence audio data can pose more significant challenges.
Xu et al. [26] introduced an attention-based network designed
for aligning textual and audio information, along with feature
extraction. Yoon [27], [66] presented a groundbreaking deep
dual recurrent encoder model that seamlessly merges text data
and audio signals. This model employs a pair of recurrent
neural networks (RNNs) to holistically encode the information.
Delbrouck [67] et al. proposed a transformer-based joint-
encoding model called UMNOS for single-sentence emotion
recognition and sentiment analysis.

III. PRELIMINARY STUDY

In speech recognition tasks, methods like MFCC or Fbank
are commonly used to extract 2-D features from audio sig-
nals through windowed sampling. For example, OpenAI’s
Whisper [6] uses Fbank to extract acoustic spectrograms
from audio, followed by a transformer-based encoder-decoder
model to convert the spectrogram into text labels.

Features extracted through Fbank often contain redundant
information, with high-frequency details offering limited util-
ity in systems like Whisper. Similar to image compression,
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where high-frequency details can be removed without losing
key information, we propose using the SVD algorithm to
compress acoustic spectrograms. This preserves low-frequency
features while reducing dimensionality for better identification
and classification.

We verify the efficacy of SVD for compressing audio
features within the Whisper speech recognition framework. In
the Whisper framework, the speech signal s € R’ undergoes
extraction by Fbank to yield the acoustic spectrogram feature
matrix f € R™"

J = Funcppank (s). (1)
Let kK = min(m, n), then we compute the SVD of matrix f
f = Udiag(S)V¥
UeR™* seRVeRr )

where diag(S) € R¥, VH is the conjugate transpose when
V is complex, and the transpose when V is real-valued, and
the matrices U, V are orthogonal in the real case, and unitary
in the complex case. In this scenario, singular values S are
sorted in descending order and are distinct. Denoting them
as 01 > 03 > 03--- > of. Then f can be expressed as the
following decomposition:

k |
f=Udiag®)V? = ai| i | (= vi ) 3)
i=1 |

Vi

V2

where U = (uy, ua, ..., uy) and VF =

%
Considering that the contribution of th]ése singular values
to the matrix shrinks sequentially, then according to the
Eckhart—Young theorem [68], we can take the compression
approximation of the acoustic spectrogram features:

r |
f%f:Zai i | (= vi —) 4)

i=1 |
where r € N N [1,k], and (r/k) € [(1/k), 1] denotes the
compression rate for acoustic spectrogram features. In contrast
to the original method where we needed to store U, S,V to
recover f, now we only need to save U’ € R"™*", §' e R", V' €
R™" to recover f’, resulting in a saved matrix size equal to
(r/k) of the original.

Subsequently, we compress the Librispeech [69] and
CommonVoice [70] datasets at various compression rates and
assess the Whisper system’s performance in recognizing the
compressed acoustic spectrogram features. The Librispeech
dataset is a large-scale corpus of read English speech, widely
used for evaluating ASR systems. It contains approximately
1000 h of transcribed speech from audiobooks and is designed
to evaluate systems in terms of both word error rate (WER)
and transcription quality. The CommonVoice dataset, created
by Mozilla, is an open-source initiative aimed at collecting
a wide variety of speech samples from diverse speakers. It
contains over 7000 h of audio data in multiple languages and

32877

—e— Librispeech
CommonVoice

H
s0
:

0.2 0.4 0.6 0.8 1.0
Compression Rates

Fig. 1. Impact of compression rate for whisper.

serves as a benchmark for testing ASR systems across various
domains and accents. As a common metric of the performance
of a speech recognition or machine translation system, word
error rate (WER) is employed to evaluate the performance of
whisper on both datasets and can be caculated by the following
formulation:

S+D+1
S+D+C
where S is the number of substitutions, D is the number of
deletions, [ is the number of insertions and C is the number of
correct words. The results depicted in the Fig. 1 demonstrate
that when the compression rate exceeds 10%, the Whisper
system exhibits commendable speech recognition performance
even for compressed speech.

Although edge devices may lack the computational power
for large-scale models, extracting Fbank features and com-
pressing them for server transmission is feasible. Compared
to direct audio file transmission, sending compressed spec-
trograms reduces bandwidth usage and communication time.
Previous studies show that SVD-based compression at 12.5%
for spectrograms (6.25% for audio files) minimally impacts
ASR performance. Amser+ will further verify that this com-
pression rate maintains accuracy in speech sentiment analysis.

WER = 5)

IV. SYSTEM

We present Amser+, a real-time SER system. It consists
of two parts: the mobile device acquires speech and extracts
features using a Fbank encoder to output a Mel Spectrogram,
which is then compressed to reduce storage. The compressed
features retain text and emotion information, and the server
performs text and emotion recognition using Whisper and
multimodal networks. The system architecture is shown in
Fig. 2.

A. Signal Preprocess

1) Feature Extraction: The mobile device extracts Fbank
features (Fbank features) from the user’s speech using a
series of preprocessing steps designed to capture the essential
characteristics of the audio signal. The process begins with
pre-emphasis, which amplifies the higher-frequency compo-
nents of the signal, helping to balance the energy across
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Fig. 2. System architecture of Amser+.

the entire frequency range and reduce the effects of low-
frequency noise. This step is crucial for enhancing the clarity
of high-frequency signals, which are often important for
speech recognition tasks. Next, the signal is split into frames
with overlapping segments, which ensures that no abrupt
changes occur between consecutive frames. The frame overlap
effectively captures the temporal continuity of the speech,
reducing the risk of losing important transitions in the audio
signal. This step is particularly important for maintaining
smooth transitions in speech analysis. Each frame is then
windowed using a Hamming window to minimize edge effects
and reduce spectral leakage. The Hamming window smooths
the signal, ensuring that the transition at the boundaries of each
frame does not introduce artifacts that could negatively impact
feature extraction. The next step is the short-time fourier
transform (STFT), which converts the time-domain signal
into the frequency domain. The STFT breaks the signal into
smaller segments, allowing the model to analyze frequency
components over time. This transformation enables the model
to capture both the spectral content and temporal evolution of
the speech signal. Finally, the signal is passed through Mel
filtering to convert the frequency-domain representation into
a scale that more closely mimics human auditory perception.
The Mel scale compresses high frequencies while preserving
the perceptually significant features of the signal, ensuring
that the extracted features align with the way humans perceive
sound. This makes the features more suitable for emotion
recognition, as it emphasizes the frequencies most relevant for
distinguishing emotional cues in speech.

2) Signal Compression: In addition to the challenges posed
by limited computational power, storage space is another
critical constraint for mobile devices that cannot be over-
looked. Given the need to handle large volumes of speech data
in real-time, efficient storage management becomes crucial
for the performance of the system. To address this, the
system employs SVD, as described in detail in Section III,
to effectively compress the speech features. SVD is used to
reduce the dimensionality of the extracted features, discarding
less important components while retaining the most significant
information necessary for emotion recognition. This compres-
sion process not only minimizes storage requirements, but also
helps with de-noising, removing irrelevant or noisy data that
may interfere with accurate emotion classification. By focusing
on preserving the key elements of the speech features—such
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Fig. 3. Multimodal model for emotion recognition.

as textual information derived from ASR and the emotional
cues embedded in the speech signal—the system ensures that
only the most relevant data is retained. This balance between
compression and feature preservation ensures that the mobile
device can operate efficiently while still maintaining high
accuracy in recognizing emotions. Ultimately, this approach
enables the system to handle large amounts of data in real-
time, while effectively managing the tradeoff between storage
limitations and the need for rich, high-quality features for
emotion recognition.

B. Emotion Recognition

Here, we describe our emotion recognition model. This
model employs three distinct modalities of data as input
sources: 1) Mel; 2) word embeddings; and 3) RoBERTa-
encoded embeddings. Initially, each modality is processed
separately. Subsequently, all the features from the various input
modalities are combined using a co-attention layer. Finally,
Linear layers are employed to produce the predictions. The
overall model structure is shown in Fig. 3.

1) Modality Input: First, the compressed features, derived
from the Mel spectrogram (via Short-Time Fourier Transform,
or STFT), effectively capture the temporal dynamics of signal
energy changes, aligning with human auditory perception.
These features provide a compact yet informative represen-
tation of the speech signal, preserving critical frequency
components that are essential for emotion recognition.

After SVD decomposition on the mobile edge device, the
Mel features are reconstructed on the server, retaining the key
characteristics of the audio signal along with the semantic
information required for emotion classification. This approach
ensures that only the most relevant features are transferred,
reducing the amount of data while maintaining the integrity
of the emotional cues essential for accurate recognition.

To further enrich the representation, we leverage the
Whisper [6] model for ASR to convert the speech signal into
its textual form. The transcriptions generated by ASR serve as
an additional source of information, complementing the audio
features. Next, we utilize text embeddings to directly learn the
semantic features from the text input. Specifically, we employ
a 300-dimensional pretrained GloVe embedding [71] obtained
through spaCy. This embedding encodes the transcription into
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fixed-length vectors, providing a dense representation of the
semantic meaning of the spoken content.

In parallel, we integrate a pretrained RoBERTa model to
extract higher-level transcription features, allowing the model
to incorporate external knowledge from large corpora. This
enables the model to understand contextual nuances and
semantic relationships within the text, which can significantly
enhance emotion recognition, especially for more complex or
ambiguous emotional expressions.

By combining these multimodal feature extraction
techniques—Mel features, text embedding, and external
knowledge integration—we create a rich, multifaceted
representation of the speech signal, improving the model’s
ability to accurately recognize emotions.

2) Modality  Preprocess: After retrieving the mel-
spectrogram of the audio signals, we apply a classic
Conv-BatchNorm-ReLU structure to extract features in both
the time and frequency dimensions. Then, an LSTM layer
is applied to extract deeper features in the time dimension.
Additionally, the word embeddings have a better time structure
and are more straightforward in each time slot. Hence, an
LSTM is applied to the word embeddings before using a
1-D-convolution layer to incorporate the information from
the entire timeline. The feature extracted from BERT is a
768-dimensional vector. As it is already well-structured and
contains abundant information, we applied a Linear layer
to modify its size for subsequent multimodal fusion and
information compression.

3) Multimodal Fusion: Given the presence of three modal-
ities, we need two rounds of fusion to combine all the
information extracted from these different modalities compre-
hensively, and determining the order of fusion is a significant
consideration. In our model, we first fuse the audio features
and word embedding features. Their akin temporal structures
make them suitable for initial fusion, as this process enhances
the temporal dimension by leveraging their shared charac-
teristics to amplify common information and compensate
for missing data unique to one modality. Subsequently, the
time-structured feature mentioned earlier is fused with the
BERT-encoded feature, incorporating external knowledge from
the outside world to in-dataset knowledge. In each fusion,
there are two stages: extracting additional features from one
modality with knowledge from another modality and then
merging these additionally extracted features into a single
representation.

In the first stage, we employed the co-attention layer to
convey the presence of another modality to each modality. The
structure of co-attention layer is as shown in Fig. 4. Inspired
by [72], we employed the Encoder-Decoder structure to stack
multiple layers of attention modules. In the co-attention layer,
the first modality employs self-attention alone to extract deeper
information from itself. Following that, the second modality
goes through a self-attention operation, during which a guided-
attention step is conducted to extract more information while
considering both modalities. In contrast to simply using the
output of the self-attention from another modality at the same
depth as the input for guided-attention, leveraging the final
output of the Self-attention layers can offer more enriched
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Fig. 4. Architecture of the co-attention layer.

information and a more accurate guide. Both self-attention and
guided-attention are based on the attention mechanism [73].
The attention module aids in constructing a holistic perspective
of the entire time span during the speech. The attention
consists of a query ¢, a key k and a value v

. gk”
Attention(q, k, v) = softmax<ﬁ>v. (6)
In the self-attention, all of g, k and v are from the same
modality. However, in guided-attention, the v and k are from
the same modality while g is from another different modality.

The first stage of the two fusion is the same, yet they
diverge in the second stage. Considering the similarity of time
structures, for the fusion between features from audio data
and word embeddings, we employ a straightforward element-
wise addition. This approach enhances their temporal structure
and reduces the feature size compared to concatenation. In the
second fusion, the features are dissimilar and lack a shared
temporal structure, which leads to lossy and disorganized
information when using element-wise addition. Consequently,
concatenation is employed to retain more information, which
is crucial for effectively leveraging both in-dataset knowledge
and external-world knowledge. Following the ultimate fusion,
we applied additional self-attention to comprehensively pro-
cess the collective information from all modalities and proceed
to make predictions using a two-layer MLP.

4) Contrastive Learning: Through our examination of mis-
classified cases in current state-of-the-art models, we identified
that the ambiguity in the emotions expressed by actors is
another factor hindering the model from learning accurate fea-
tures. It is common to observe that a person’s emotions can be
complex, even involving contradictory feelings simultaneously.
However, datasets with labels assigned to a single emotion as
the ground truth may be misleading in capturing the presence
of other coexisting emotions. Furthermore, employing tradi-
tional cross-entropy loss during model training mechanically
steers the model to predict a probability of 1 only for the
labeled emotion, penalizing predictions with nonzero prob-
abilities for other emotions. This situation can significantly
perplex the model, especially in cases where multiple emotions
coexist. Moreover, stemming from naturalistic conversations
in daily life, our dataset exhibits an imbalanced distribution
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of labels. Specifically, there is a pronounced prevalence of
sentences labeled as neutral, contrasting with a scarcity of
instances labeled as surprise.

Consequently, we advocate for the implementation of a
contrastive learning loss as a regulatory measure to alleviate
the impact of multiple emotions and mitigate data imbalances.
Contrastive learning is a training technique that originated
from unsupervised learning. Supervised learning studies [74]
have also demonstrated its effectiveness, utilizing samples
from the same class as positive samples and others as negative
samples. The loss used in [74] is following:

Z log

PEP()

exp(z; - 2p/T)
ZaeA(z‘) exp(z; - 2o /T) )

1
LSupCon = - ; m (7N

Here, I is the set of classes, A(i) is the batch of samples
contrasting with feature z;, P(i) is the set of positive samples
of feature z; in A(7), i.e., samples with the same label.

The loss function is characterized by a vague description,
suggesting that the feature extracted from a given sample
should exhibit proximity to features extracted from positive
samples while maintaining distance from features of other neg-
ative samples. Unlike traditional supervised learning, which
prescribes a specific point in a lower dimension for a sample,
contrastive learning defines positions in high-dimensional
space that a sample should either approach or diverge from.
This can mitigate the impact of labels, thereby diminishing
the influence of multiple emotions.

As depicted in Figs. 5 and 3, the contrastive learning loss
is computed from the feature projector’s output, whereas the
conventional cross-entropy loss relies on the output of the
predictor. The feature projector and the predictor are both a
one-layer MLP. Therefore, the final loss can be represented as

_ Leg+oa- LSupCon
B 1+«

(®)

where « is a hyperparameter to control the importance of
contrastive learning loss in the final loss.

5) Data Augmentation: We formulate data augmentation
strategies to mitigate the impact of noise, thereby improving
the overall generalization of the model. In detail, we augment
the audio signals in three ways: 1) adding noise based on SNR;
2) applying pitch shifts; and 3) employing time stretching.
When adding noise to the audio feature, we use an SNR of
30dB, and randomly initialize the noise in Gaussian distribu-
tion. The pitch shift and time stretch are implemented by the
librosa. In IEMOCAP, to increase the contrastive samples, we
take advantage of the Dropout layers in our model. We run
the prediction twice in one epoch to generate different features
from the same sample. Also, as described in the previous
section, we adopted MoCo [30] with size 16384.

V. EVALUATION
A. Dataset

We use the IEMOCAP dataset [29] and VCEMO [75],
collected by the University of Southern California (USC)
and Shanghai Voicecomm Information Technology Company,
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respectively, to evaluate our Amser+ system and train and test
our model.

IEMOCAP: The dataset consists of 5 sessions featuring 10
actors (5 male, 5 female), with approximately 12 h of total
recording time. These interactions are scripted to evoke a range
of emotions, and the recordings include both spontaneous
and acted emotional expressions. The emotion categories in
IEMOCAP are anger, happiness, sadness, fear, disgust, neutral,
and a few mixed emotions. The audio recordings are annotated
with emotion labels at the sentence level, making them ideal
for studying speech-based emotion recognition. The dataset
contains both acted and natural emotional speech, providing a
rich resource for training and evaluating emotion recognition
models. Additionally, it includes transcriptions of the spoken
content, which makes it well-suited for multimodal approaches
that integrate both speech and text analysis. [IEMOCAP has
been widely used for training, validating, and testing emotion
recognition models, establishing it as a reliable resource
for exploring techniques in SER and multimodal emotion
recognition.

VCEMO: VCEMO is a recently proposed multimodal emo-
tion recognition dataset tailored for Chinese voiceprint-based
applications. It comprises 7477 single-sentence utterances
collected from over 100 native speakers across diverse dialects
and spontaneous conversational settings, thereby offering a
rich variety of emotional expressions and acoustic features.
Unlike prior datasets that rely on professional actors, VCEMO
reflects real-world dialogue scenarios, with each utterance
annotated by experts into six emotion categories: angry, fear,
happy, neutral, sad, and surprise. VCEMO is particularly
valuable for developing and benchmarking robust, context-
aware emotion recognition systems in Mandarin Chinese.

B. Experimental Setup

1) Device: Sever: We utilize a server equipped with 188
GB of RAM and a 48.0 GB VRAM’s NVIDIA A40 as our
evaluation system for model training and testing.

Client: Redmi Note 12 Pro equipped with 8 GB of RAM
and Mediatek dimensity 1080 is used as a system client for
audio file processing and compression.

2) Model Training: The model was trained for 100 steps
with a batch size of 256 to ensure efficient data processing
and stable gradient updates. The Adam optimizer [76] was
used for its adaptive learning rate mechanism, which helps
improve convergence efficiency. The learning rate was set
to le-5, a typical choice for fine-tuning speech recognition
models, enabling effective parameter updates without over-
shooting. The weight decay was set to 0, as no additional
regularization was needed beyond other training strategies to
avoid overfitting.

These hyperparameters were chosen based on standard
practices in speech-related tasks, balancing stability and con-
vergence speed. The smaller learning rate, paired with a
relatively large batch size, facilitates gradual convergence,
especially in the context of emotion recognition in speech data.

For the contrastive learning component, the temperature
parameter ¢ of the contrastive loss function was set to 1. This
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Fig. 5. Pipeline of the contrastive learning.

value was chosen to strike an optimal balance between the sep-
aration of positive and negative pairs in the embedding space,
allowing the model to effectively learn both the structure of
the data and the subtle emotional cues in the speech signals.
The training process was conducted using PyTorch [77]
on an NVIDIA A40 GPU. This hardware choice facilitated
efficient parallel computation, enabling faster training while
maintaining high performance during multiple training steps.
During the training process, key metrics, such as accuracy,
loss, and emotion recognition performance were continuously
monitored to ensure consistent model improvement.

C. Baseline Method

To evaluate the performance of our proposed system, we
compare it against four baseline methods, each representing
different approaches for speech signal compression and trans-
mission. These baselines are designed to showcase the effects
of various compression techniques on emotion recognition
performance.

1) Raw Audio (WAV) Transmission: The first baseline
represents a system that directly transmits the raw audio
file (RAW), typically in WAV format, without any
compression. While this method ensures high-quality
audio transmission, it comes with the drawback of large
file sizes, which increases both storage and bandwidth
requirements. Despite the lack of compression, which
preserves the original signal quality, it may not be the
most efficient for real-time applications, especially on
resource-constrained mobile devices.

2) MP3/AAC Compression: The second baseline utilizes
lossy audio compression techniques, such as MP3 or AAC,
to reduce the size of the audio file. These formats achieve
significant compression by removing less perceptible
audio components, balancing between compression ratio
and audio quality. While MP3 and AAC compression
help reduce file size and bandwidth usage, they can also
lead to some loss of information, potentially affecting the
quality of the extracted features for emotion recognition,
especially for subtle emotional cues.

3) Mel Spectrogram Compression Using Interpolation: The
third baseline involves compressing Mel spectrogram
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features using interpolation techniques. In this method,
the Mel spectrogram is downsampled using interpolation
algorithms to reduce its size. Interpolation maintains
a close representation of the original Mel spectro-
gram while reducing its dimensionality. However, this
approach may not preserve the finer details of the
spectrogram, which could impact the ability of emotion
recognition systems to identify subtle emotional varia-
tions in the speech.

1) Evaluation Metrics: To assess the performance and
effectiveness of our model for SER, we use several evaluation
metrics. These metrics help us to capture not only the accuracy
of the model but also its operational efficiency, including its
ability to work efficiently on mobile devices.

Compression Rate: Throughout our experiments, we define
the compression rate as the ratio of compressed data size to its
original counterpart, with units based on file size. In our model
performance comparisons (Section V-D1), the compression
rate refers to the reduction applied to Mel spectrograms—
for instance, a 12.5% rate means that the compressed feature
has 12.5% the size of the original Mel spectrogram. In
contrast, for the system overhead evaluation (Section V-D2),
the compression rate is calculated relative to the raw audio
waveform file size. Under this interpretation, a 12.5% Mel
spectrogram compression corresponds approximately to 6.25%
of the original waveform size, as the Mel spectrogram typically
accounts for around half the storage size of the full audio
signal in our pipeline.

Accuracy: Accuracy is the fundamental metric for eval-
uating classification tasks, including SER. It measures the
proportion of correct predictions (both true positives and true
negatives) out of all predictions made. Specifically, accuracy
is defined as

Number of Correct Predictions

Accuracy = — . )
Total Number of Predictions

In the context of SER, accuracy quantifies how well the model
identifies the correct emotional label for the input speech
samples. A high accuracy score indicates that the model can
effectively classify emotional states from speech data.

FI Score: While accuracy is important, it may not be
sufficient in scenarios with imbalanced data or when certain
emotional classes dominate. To address this, we utilize the
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Fl-score as a more balanced metric, which considers both
precision and recall. The Fl-score is the harmonic mean of
precision and recall and is defined as

2 (precision - recall)

F1 (10)

precision + recall

The precision represents the fraction of relevant instances
among the retrieved instances, while recall measures the
fraction of relevant instances that were retrieved. The
F1-score provides a better understanding of the model’s ability
to handle class imbalances by rewarding models that balance
both precision and recall. This ensures that the model doesn’t
simply predict the majority class with high accuracy, but
also correctly identifies minority classes, which is crucial for
emotion recognition tasks.

Energy Consumption: In addition to classification
performance, we evaluate energy consumption during audio
stream transmission, which is crucial for mobile devices.
The energy consumption is measured during the transfer of
compressed audio features from the mobile device to the
server. This metric accounts for both the computational load
and network overhead involved in transmitting the audio
stream. Lower energy consumption ensures that the model
can run efficiently on mobile devices without draining the
battery, which is especially important for real-time emotion
recognition tasks.

Latency: We also measure the latency associated with audio
stream transmission, which refers to the time taken to process
the input audio signal and transmit it for emotion recognition.
Latency is critical in real-time applications like SER, where
quick feedback is required. Our system aims to minimize
latency by efficiently transmitting compressed audio features
and processing them on the server. Low latency ensures
that predictions are made promptly, providing a smooth user
experience.

D. Micro Benchmark

1) Model Comparison: The experiments in this section val-
idate the emotion recognition accuracy by comparing different
deep neural networks, including UMONS [67], Xu et al. [26],
and Yoon et al. [27], [66]. Additionally, to investigate the
impact of signal compression on SER, we evaluate the recog-
nition accuracy under different compression rates.

First, comparing the proposed system with other networks,
we observe that incorporating external world knowledge into
our deep neural network significantly improves emotion recog-
nition performance. The accuracy achieved by our system
is 73.92% on IEMOCAP and 67.40% on VCEMO for the
4-way classification, which is notably higher than the accuracy
of the baseline networks, demonstrating the effectiveness of
integrating additional contextual knowledge. This result con-
firms that the proposed model can better capture the complex
nuances of emotional expression in speech, leading to superior
performance.

Moreover, we analyze the effect of compression rate on
the system’s recognition accuracy. As the compression rate
increases, the accuracy only shows a slight decrease from
73.92% to 72.85% on IEMOCAP and 67.40% to 65.23% on
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TABLE I
ACCURACY COMPARISON OF DIFFERENT MODELS ON IEMOCAP
Compress Rate Ours UMONS Xu Yoon
12.50% 72.85% 67.84% 63.34% | 55.52%
18.75% 73.25% 67.64% 63.64% | 55.91%
25.00% 73.52% 67.64% 63.74% | 56.21%
50.00% 73.81% 67.74% 63.83% | 56.89%
100.00% 73.92% 67.64% 64.32% | 58.26%
TABLE 11
ACCURACY COMPARISON OF DIFFERENT MODELS ON VCEMO
Compress Rate Ours UMONS Xu Yoon
12.50% 65.23% 61.26% 58.12% | 59.82%
18.75% 65.87% 61.54% 58.43% | 59.79%
25.00% 66.92% 62.57% 58.67% | 60.42%
50.00% 66.85% 63.06% 59.03% | 60.85%
100.00% 67.40% 63.27% 59.42% | 60.96%
TABLE III
F1 SCORE COMPARISON OF DIFFERENT MODELS ON IEMOCAP
Compress Rate Ours | UMONS Xu Yoon
12.50% 0.713 0.677 0.630 | 0.548
18.75% 0.716 0.675 0.633 | 0.553
25.00% 0.721 0.676 0.633 | 0.556
50.00% 0.725 0.677 0.635 | 0.564
100.00% 0.728 0.675 0.640 | 0.577
TABLE IV
F1 SCORE COMPARISON OF DIFFERENT MODELS ON VCEMO
Compress Rate | Ours | UMONS Xu Yoon
12.50% 0.654 0.621 0.542 | 0.572
18.75% 0.664 0.624 0.563 | 0.575
25.00% 0.668 0.628 0.572 | 0.584
50.00% 0.670 0.631 0.571 | 0.583
100.00% 0.672 0.634 0.577 | 0.591

VCEMO, which is still significantly higher than the accuracy
of the other networks across all compression rates (see Tables I
and II). This indicates that our system is robust to compression,
maintaining high performance even when speech features are
heavily compressed. Such resilience to compression is crucial
for mobile and edge devices, where bandwidth and storage are
limited.

The system’s performance is further validated by the F1-
score, which is a combination of accuracy and recall, providing
a more comprehensive evaluation of the model’s effectiveness.
As shown in Tables III and IV, the Fl-scores of our model
consistently outperform the existing emotion recognition meth-
ods, further solidifying the advantage of our approach in
terms of both precision and recall. This demonstrates that
the proposed system not only achieves high accuracy but
also performs well in terms of balancing false positives and
false negatives, which is essential for real-world emotion
recognition tasks.

In summary, the experimental results show that our system
Amser+, while leveraging signal compression and external
knowledge, achieves superior emotion recognition accuracy
and remains robust under varying compression rates. This
makes our approach highly suitable for resource-constrained
environments, such as mobile devices and edge computing
systems, without compromising recognition performance.
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TABLE V
TRANSMISSION TIME AND ENERGY CONSUMPTION
System RAW MP3 AAC Intp Amser+
Latency(s) 406.58 | 357.82 | 344.15 | 276.38 180.75
Energy(kWh) | 0.0056 | 0.0051 | 0.0044 | 0.0041 0.0025

2) System Overhead: In this section, we investigate the
effect of signal compression on power consumption and
latency during the transmission of compressed speech data
over WiFi. The experiment utilizes a compression rate of
6.25%, with a total of 22366 audio files being transferred for
evaluation. The latency and energy consumption of different
compression methods are measured and compared, including
RAW, MP3, AAC, and Interpolation (Intp), along with our
proposed system, Amser+.

As shown in Table V, the transmission latency and energy
consumption of each system are summarized. When transfer-
ring RAW, the latency is 406.58 s, and the energy consumption
is 0.0056 kWh. In contrast, the systems using lossy com-
pression methods, such as MP3 and AAC achieve faster
transmission times, with latencies of 357.82 s and 344.15 s,
respectively, and slightly reduced energy consumption com-
pared to RAW. The Interpolation-based compression (Intp)
method further reduces latency to 276.38 s, with energy
consumption decreasing to 0.0041 kWh.

However, our proposed system, Amser+, demonstrates the
most significant improvements. It reduces latency to 180.75 s,
which is 2.24 times faster than RAW transmission and 1.53
times faster than the interpolation-based method. Furthermore,
our system achieves a 55.35% reduction in energy con-
sumption, dropping to just 0.0025 kWh compared to the
raw transmission, marking a substantial improvement in both
latency and energy efficiency.

These results highlight the effectiveness of our proposed
system in optimizing both the speed and energy efficiency of
speech data transmission. The combination of signal compres-
sion and advanced feature extraction techniques enables our
system to achieve faster processing times while significantly
lowering the power consumption, making it highly suitable for
resource-constrained environments, such as mobile and edge
devices, where both energy efficiency and latency are critical
factors.

E. Ablation Study

To further understand the effect of each modality, we
performed an ablation study based on the 6.25% compression
rate. The results are presented in Tables VI and VII, where we
test the network model’s performance in emotion recognition
using different modalities.

When using only Mel Features, the system achieves 55.18%
accuracy and an Fl-score of 0.541 on IEMOCAP, and 51.85%
/ 0.503 on VCEMO. This shows that Mel features, which
capture acoustic properties like pitch and tone, provide some
useful emotional cues, but they are not sufficient on their own
for optimal emotion recognition.

a) Impact of word  embedding: Adding  Word
Embeddings leads to significant improvements. The combina-
tion of Mel Features and Word Embeddings achieves 68.21%
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TABLE VI
ABLATION STUDY OF USING DIFFERENT MODALITIES ON IEMOCAP:
EMBEDDINGS MEANS THE SIMPLE TRANSCRIPTION EMBEDDINGS WHILE
THE ROBERTA MEANS THE ROBERTA EMBEDDINGS

Used modality Accuracy | Fl-score
Embeddings 59.40% 0.571
RoBERTa 55.29% 0.532
Mel Features 55.18% 0.541
Embeddings + RoBERTa 59.26% 0.581
Embeddings + Mel Features 68.21% 0.674
RoBERTa + Mel Features 64.23% 0.639
Embeddings + RoBERTa + Mel Features 72.85% 0.713

TABLE VII
ABLATION STUDY OF USING DIFFERENT MODALITIES ON VCEMO:
EMBEDDINGS MEANS THE SIMPLE TRANSCRIPTION EMBEDDINGS WHILE
THE ROBERTA MEANS THE ROBERTA EMBEDDINGS

Used modality Accuracy | Fl-score
Embeddings 55.82% 0.541
RoBERTa 51.96% 0.498
Mel Features 51.85% 0.503
Embeddings + RoBERTa 56.01% 0.539
Embeddings + Mel Features 64.13% 0.632
RoBERTa + Mel Features 59.89% 0.596
Embeddings + RoBERTa + Mel Features 65.23% 0.654

accuracy (F1: 0.674) on IEMOCAP and 64.13% (F1: 0.632)
on VCEMO. This suggests that lexical features extracted from
transcriptions effectively complement acoustic signals across
both English and Mandarin speech.

b) Impact of RoBERTa: When Mel Features and
RoBERTa are combined, the accuracy increases to 64.23%
on IEMOCAP and 59.89% on VCEMO. This result indicates
that while RoBERTa’s contextual knowledge enhances the
feature extraction from speech, it works better when fused
with Mel Features than when used alone. However, it still
underperforms compared to the combination of Mel Features
+ Word Embeddings, suggesting that the latter provides more
direct and relevant features for emotion recognition.

Finally, the best performance on both datasets is achieved
by integrating all three modalities. On IEMOCAP, the full
fusion yields 72.85% accuracy and an Fl-score of 0.713; on
VCEMO, the system reaches 65.23% and 0.654, respectively.
These results underscore the importance of multimodal fusion
in capturing diverse emotional signals across languages and
speaking styles.

VI. USER STUDY

In this section, we examine the usability of Amser+. We
invited 10 participants (7 male, 3 female, ages 20-35) to use
the Amser+ that performed real-time SER and provided feed-
back in the form of emotion labels. After completing a short
task (e.g., reading predefined utterances and observing system
responses), participants were asked to rate the system using
the 12-item System Usability Scale (SUS [78]) questionnaire
on a 5-point Likert scale ranging from “strongly agree” to
“strongly disagree.” The questionnaire is as follows.

About You

In this section, you will be presented with a number of
questions about yourself.
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1 Your Gender:
O Female
O Male
2 How Old Are You?
O Below 18
0O 18-24
O 25-34
O Above 35
3 Your Education Level:
O High school or lower
O Undergraduate degree
O Master’s degree
O Doctoral degree
O Other:
4 Languages You Speak Fluently:
O English
Chinese
Hindi
Spanish
French
Other:

Oo0oooao

A. About User Experience

In this section, you will be presented with a number of
questions about your opinions and attitudes toward Amser+.

After completing the short task using the proposed Amser+
system, please rate your opinions on the following aspects.

1 [ think I would like to use the Amser+ emotion recog-
nition system frequently in real-world applications.
Strongly Disagree (-2) O—0O—0O—0O—0O Strongly
Agree (2)

2 [ found the emotion recognition process more compli-
cated than necessary.

Strongly Disagree (-2) O—0O—0O—0O—0O Strongly

Agree (2)

3 [ thought the system was easy to interact with using
my voice.
Strongly Disagree (-2) O—0O—0O—0O—0O Strongly
Agree (2)

4 [ think I would need help from a technical person to
use this system.
Strongly Disagree (-2) O—0O—0O—0O—0O Strongly
Agree (2)

S 1 felt that processing and feedback were well integrated
in this system.
Strongly Disagree (-2) O—0O—0O—0O—0O Strongly
Agree (2)

6 I noticed inconsistencies in the way the system
responded to different emotional tones.
Strongly Disagree (-2) O—0O—0O—0—0O Strongly

Agree (2)

7 1 believe most users would learn how to use the system
quickly.
Strongly Disagree (-2) O—0O—0O—0—0O Strongly
Agree (2)

IEEE INTERNET OF THINGS JOURNAL, VOL. 12, NO. 16, 15 AUGUST 2025

8 I found the overall interaction with the system to be
cumbersome.
Strongly Disagree (-2) O—0O—0O—0O—0O Strongly
Agree (2)

9 [ felt confident that the emotional labels predicted by
the system matched my intended emotion.
Strongly Disagree (-2) O—0O—0O—0O—0O Strongly
Agree (2)

10 [ had to figure out too many things before I could use
the system properly.
Strongly Disagree (-2) O—0O—0O—0O—0O Strongly
Agree (2)

11 [ feel the system responded quickly enough to be used
in real-time interactions.
Strongly Disagree (-2) O—0O—0O—0O—0O Strongly
Agree (2)

12 [ noticed a noticeable delay between my speech and
the system’s feedback.
Strongly Disagree (-2) O—0O—0O—0O—0O Strongly
Agree (2)

Please describe your experience with Amser+. What aspects

did you particularly enjoy? Are there any areas where you
think the system could be improved?

Table VIII summarizes participants’ responses to the
12-item usability questionnaire. The results demonstrate an
overall positive perception of the Amser+ system.

For positively worded items (Q1, Q3, Q5, Q7, Q9, Ql11),
participants reported high levels of agreement. In particular,
Q7 and Q3 received the highest average ratings of 1.1
and 1.0, respectively, indicating the system’s learnability and
interaction friendliness. Q11, which specifically evaluated real-
time responsiveness, also scored highly (1.0), suggesting that
most users found the system sufficiently fast for real-time
applications.

For negatively worded items (Q2, Q4, Q6, Q8, Q10, Q12),
the average scores were consistently below zero; after reverse
scoring, this indicates favorable user sentiment. For instance,
Q10 received the lowest raw average (—1.2), suggesting that
participants strongly disagreed with the statement and found
the system easy to start using. Similarly, Q12 scored —0.9,
indicating that most users did not perceive any significant
latency during interaction.

Taken together, these results indicate that Amser+ demon-
strates strong usability, with both direct and reverse-scored
items showing consistent user satisfaction.

VII. DISCUSSION
A. Noise Robustness in Real-World Scenarios

In practical scenarios, such as in-car environments, open
offices, or smart homes, ambient noise is often inevitable and
varies significantly in intensity and spectral characteristics.
To mitigate the impact of noise, our system employs Mel-
spectrogram features, which are perceptually motivated and
emphasize frequency components most relevant to human
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TABLE VIII
RESULT OF QUESTIONNAIRE

Strongly Disagree (-2) | Disagree (-1) | Not sure (0) | Agree (1) | Strongly Agree (2) | Average Rating
Q1 1 1 2 2 4 0.7
Q2 4 2 2 2 0 -0.8
Q3 0 1 3 1 5 1.0
Q4 3 3 3 1 0 -0.8
Q5 1 2 1 2 4 0.6
Q6 4 1 1 3 1 -0.4
Q7 0 1 1 4 4 1.1
Q8 5 2 2 1 0 -1.1
Q9 2 1 1 4 2 0.3
Q10 5 2 3 0 0 -1.2
Q11 0 1 1 5 3 1.0
Q12 4 2 3 1 0 -0.9

auditory perception. This naturally suppresses irrelevant high-
frequency noise and improves robustness in moderately noisy
conditions.

Moreover, in real-world applications where noise levels are
particularly high, Amser+ can be extended with a lightweight
real-time speech enhancement module on the mobile device,
such as [31], [32], [79]. This module, running in parallel
with audio acquisition, would enhance human speech signals
and attenuate background noise before feature extraction.
Such integration is orthogonal to our current compression
and recognition pipeline and can further improve performance
without modifying the downstream network. Exploring such
enhancements remains an important direction for future work
in extreme acoustic environments.

B. Handling Overlapping Speech

The Amser+ system is not explicitly designed to address
overlapping speech scenarios, where multiple speakers speak
simultaneously within the same audio segment. Such sit-
uations are common in real-world mobile contexts, such
as cafés, group conversations, or shared office spaces. In
the presence of overlapping speech, the input signal may
contain mixed acoustic and emotional cues from different
speakers, which poses significant challenges for both ASR
and emotion classification. ASR performance may degrade
due to misalignment of speaker-dependent phonetic content,
and emotion recognition may fail to isolate speaker-specific
emotional expressions, resulting in ambiguous or inaccurate
predictions. Effectively handling overlapping speech would
require incorporating techniques, such as speech separation
(e.g., source separation networks) or speaker diarization, which
can isolate individual speaker streams from a mixture. These
components, however, introduce additional model complexity
and may require speaker-level supervision or computational
resources not yet optimized for mobile deployment. We con-
sider this an important but orthogonal extension to our current
system design and leave it as a promising direction for future
work aiming at enhanced multispeaker robustness.

C. Personalization and Speaker Adaptation

In mobile environments where frequent users interact with
the system, personalization can play a crucial role in improv-
ing recognition accuracy and user satisfaction. Although
Amser+ is designed as a speaker-independent model to ensure
broad generalizability, its modular structure allows for the

potential integration of user-specific adaptation. For instance,
lightweight fine-tuning or embedding adaptation techniques
could be applied to the ASR or emotion recognition modules
based on a user’s historical speech data. Such personaliza-
tion has been shown to improve recognition accuracy by
better capturing individual speech traits, emotional expression
styles, and linguistic patterns. Moreover, recent advances in
on-device continual learning and speaker embedding-based
personalization provide promising pathways for incremental,
privacy-preserving adaptation without compromising latency
or model efficiency. However, we note that there is currently
a lack of large-scale, long-duration datasets from single users
that would enable comprehensive personalization studies. We
leave the collection and evaluation of such data as an important
direction for future work to enhance system robustness and
personalization in long-term deployments.

VIII. CONCLUSION

We propose Amser+, a real-time SER framework for mobile
devices. By offloading deep neural network computations to
a server, the system reduces the load on mobile devices.
Speech signals are compressed using Fbank features and SVD,
minimizing storage requirements while preserving key emo-
tional cues. A pretrained RoBERTa model further enhances
emotion recognition accuracy by incorporating external knowl-
edge. Extensive experiments validate the system’s feasibility,
showing it achieves high-accuracy and low-energy consump-
tion, making it ideal for mobile-based emotion recognition
applications.
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