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Abstract—Real-time audio streaming transmission and processing play a crucial role in time-sensitive applications such as food
delivery services and ride-hailing platforms, where rapid response is essential. However, existing server-based audio streaming
architectures struggle to handle the high concurrency of massive mobile devices efficiently. Traditional compression methods like MP3
and AAC offer limited compression ratios, while deep learning-based approaches often fail to meet the real-time transmission demands
of edge computing environments. In this paper, we propose a novel edge-to-server audio streaming architecture that leverages Mel
filter bank spectral features to achieve ultra-high compression efficiency. Our system integrates audio denoising, Mel feature extraction,
and quantization-based compression at the edge, effectively suppressing environmental and device-induced noise while achieving an
extreme compression ratio of 0.39% relative to the original uncompressed audio. Compared to conventional methods like MP3, our
approach further reduces the file size by 96.1%. The decompressed Mel features remain task-independent, enabling seamless
support for various general-purpose audio processing tasks in the server. We evaluate our system across three key audio tasks:
speech recognition, speech emotion recognition, and audio classification. Extensive experiments on five different mobile devices
demonstrate a 93.10% reduction in transmission latency at 1 Mbps bandwidth compared to 64 kbps MP3 audio, while maintaining task
performance within a 5% deviation from state-of-the-art (SOTA) models across six mainstream audio datasets. These results highlight
the efficiency, robustness, and scalability of our approach for real-time edge-to-server audio processing.

Index Terms—Mobile streaming audio application, Ambient noise adaptation, Mel-spectrogram-based audio compression
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1 INTRODUCTION
To protect service quality and safety, companies such as
Didi Dache and Meituan record the audio of delivery staff
and drivers during the service process and upload it to the
corporate server in real-time. The purpose is to record the
live situation of the service process to protect the reasonable
rights and interests of users and staff and to make timely
responses to accidents such as car accidents and disputes.
According to statistics [1], Didi Dache had 3.746 billion ride-
sharing or meal delivery orders in the first quarter of 2024,
creating a demand for real-time transmission, processing,
and storage of massive amounts of audio.

The real-time transmission, processing, and storage
of massive audio streams challenge the existing edge-to-
server architecture. Firstly, although the audio is not stored
directly on the driver’s and passenger’s mobile phones, the
long duration of audio transmission will lead to traffic and
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Fig. 1: The audio streaming architecture, AUCOM, enables
efficient real-time audio compression and transmission on
the edge. The compressed Mel features are independent of
downstream tasks and can support universal audio process-
ing tasks in the server.

energy consumption problems. In addition, as the scale of
users increases, for example, the number of active drivers in
China has reached 10 million [1]. The parallel transmission
of large-scale mobile devices will increase the load on the
platform, which may affect the stability of the system and
the continuity of the service.

The existing audio streaming architecture eases the bur-
den by compressing audio files. The lossless audio compres-
sion techniques such as FLAC [2], ALAC [3], APE [4], and
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WAV [5] are capable of compressing audio files by 40−60%.
MP3 [6], AAC [7], and other methods achieve compression
rates of 10 − 20% by removing some of the audio data
that is imperceptible to the human ear. For example, when
recording audio in MP3 format on mobile, the commonly
used bit rate is 128kbps, and recording 10 hours of audio
will generate a file of about 562.5MB. However, as the user
scale continues to expand, the above methods are difficult to
fundamentally solve the real-time transmission load in the
case of high concurrency of massive mobile devices and the
storage pressure caused by massive audio files.

Deep learning-based audio compression technology uses
neural networks to build the Auto-Encoder for compres-
sion, significantly improving the compression ratio while
ensuring audio quality [8], [9]. Encodec [9] compressed
24KHz audio down to 1.5kbps based on a multi-scale
spectral adversarial network. DAC [8] introduced Residual
Vector Quantisation (RVQ) based on Adversarial Generative
Networks to compress 44.1KHz audio to 8kbps. However,
complex network structures such as the transformer [9]
make it difficult to balance the computation and transmis-
sion burden of edge devices and introduce additional en-
ergy consumption and severe latency issues. Furthermore,
the audio reconstructed by these networks at extremely low
bit rates (≤ 3kbps) tends to exhibit significant distortion.

In response to the dilemma of current audio stream-
ing architectures, we propose the following hypothesis: Is
it possible to achieve real-time audio compression and
transmission with low computation and high compression
rate on the edge, and achieve high-precision processing of
generic downstream speech tasks in the server?

In this paper, we propose a novel edge-to-server archi-
tecture for audio streaming based on a novel audio feature
compression model, AUCOM. Inspired by task offloading
[10], [11], the system attempts to implement real-time ex-
traction and compression of audio features at the edge
and use the compressed universal audio features in the
server for tasks such as speech recognition [12], [13], speech
emotion recognition [14], [15], [16], and audio classification
[17], [18], [19]. The system breaks through the performance
bottlenecks of existing audio streaming architectures and
differs from previous systems in two main aspects:

• Compression efficiency: The system proposes a com-
pression network based on rate-distortion optimization,
which achieves real-time audio compression with a low
compression rate and low computation on the mobile
side. The audio processing and compression time for
1-minute audio is only ∼ 200ms, and the compressed
audio features are only 0.39% of the original audio.

• Feature Universality: Distinguished from task-specific
feature extraction methods, the audio Mel filter bank
features are independent of the downstream task. In
this paper, we test three typical audio tasks: speech
recognition, speech emotion recognition, and audio
classification. The compressed features can be adapted
to various SOTA models, and the model accuracy of
multiple datasets is kept within 5% of the deviation
from the original audio.

Building a real-time and efficient audio streaming ar-
chitecture presents several challenges. One major issue is
the presence of multiple noise interferences during audio

acquisition on mobile devices. These interferences include
environmental noise (e.g., traffic noise, crowd chatter, wind
noise, and mechanical noise) as well as device-induced noise
(e.g., circuit noise and electromagnetic interference), both of
which can significantly degrade the quality of subsequent
audio processing tasks.

To address this, we propose a deep learning-based de-
noising network, AUCOMSENET, which adopts a codec ar-
chitecture to perform audio denoising and speech recovery
in the time-frequency domain. The model leverages the
Performer mechanism to efficiently capture temporal and
spectral dependencies while applying power-law compres-
sion to the amplitude spectrum for improved denoising
accuracy. Through parallel amplitude mask decoding and
phase decoding, the network predicts refined amplitude and
phase information, ultimately reconstructing high-quality
audio signals. Furthermore, we incorporate a GAN-based
training strategy with a metric discriminator to enhance
optimization and improve overall denoising performance.

The second challenge lies in the inherent redundancy of
audio data, which makes it difficult for traditional audio-
based compression schemes to break through efficiency bot-
tlenecks and achieve more effective compression. To address
this, we propose a Mel-spectrogram-based compression ap-
proach, leveraging the compact and expressive nature of
Mel features to maximize audio compression efficiency. Un-
like conventional image compression, however, Mel feature
compression requires a quantization model that simultane-
ously considers both frequency and temporal dimensions.

To this end, we introduce AuComNet, a neural network-
based audio compression model built around an edge de-
vice to server communication pipeline that is architecture-
agnostic: the “server” can be an edge node in a three-
layer device–edge–cloud stack or a cloud node in a two-
layer device–cloud setup. On the device, the compression
module extracts fbank features and applies Generalized
Divisive Normalization (GDN) to obtain compact represen-
tations; during training, we relax quantization via additive
uniform noise to enable end-to-end differentiability, and at
runtime we perform entropy coding for lossless bitstream
generation. On the server side (edge or cloud server), the
decompression module performs entropy decoding, inverse
normalization, and parametric synthesis to reconstruct the
fbank features. The decoder is modular and configurable,
allowing integration with dynamic offloading policies that
consider real-time network conditions, device capabilities,
and server load; while a full policy design is beyond our
scope, our design explicitly supports both two- and three-
layer deployments.

Finally, to satisfy the requirements of downstream au-
dio applications, the decompressed Mel features need to
support the efficient execution of various audio tasks. To
achieve this, we utilize the Whisper [20], UMNOS [21], and
AST [22] models deployed in the server for performing
speech recognition, speech emotion recognition, and audio
classification tasks, respectively. The main contributions of
this work are as follows:

• Robust Audio Denoising: We propose an audio denois-
ing module based on a time-domain codec architecture,
integrating a GAN-based training strategy to effectively
reconstruct magnitude and phase information. This
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enables efficient and high-fidelity audio denoising on
edge devices.

• Efficient Audio Compression: We introduce a Mel-
spectrogram-based compression scheme, implementing
a Mel feature extraction and quantization compression
model at the edge device. This approach overcomes the
bottleneck of traditional audio compression, achieving
an extreme compression ratio of 0.39%, which corre-
sponds to a 96.1% reduction in file size compared to
conventional methods (e.g., MP3) under similar task
accuracy constraints.

• Generalizable Audio Decompression: We design a
server-based decompression module that reconstructs
bitstream-based Mel features while ensuring indepen-
dence from downstream tasks. The system seamlessly
supports a variety of audio applications, including
speech recognition, speech emotion recognition, and
audio classification, while maintaining compatibility
with state-of-the-art (SOTA) models such as Whisper,
UMNOS, and AST.

• Real-Time Cloud-Edge Streaming Architecture: We
propose and evaluate a real-time audio streaming archi-
tecture that can leverage both cloud and edge servers,
optimizing edge-to-server communication via a mod-
ular design. This architecture supports both two-layer
and three-layer configurations, making it adaptable to
different deployment scenarios. We demonstrate the
effectiveness of this architecture across a server and five
mobile devices, conducting experiments on six main-
stream audio datasets for three speech-related tasks.
Our results show that, compared to MP3 at 64 kbps, our
system reduces file transfer time by 93.10% for 1-minute
audio transmission over a 1 Mbps upload bandwidth,
significantly improving transmission efficiency.

2 RELATED WORK

2.1 Audio Compression

2.1.1 Traditional Compression

Traditional audio compression methods are mainly divided
into two categories. lossless compression methods such as
FLAC [2], ALAC [3], APE [4], and WAV [5] retain all the
information of the original audio, removing redundant data
without losing sound quality. Lossy compression methods
such as MP3 [6] and AAC [7] discard the frequency in-
formation that is not easily perceived by the human ear.
Although there is a loss of sound quality, it provides an
adequate listening experience.

2.1.2 DL-based Compression

With the neural network model, significant compression
ratios can be achieved while maintaining high-quality au-
dio results. DAC [8] introduced Residual Vector Quantisa-
tion (RVQ) based on Adversarial Generative Networks to
achieve high-fidelity compression of various types of audio.
Encodec [9] employs techniques such as improved vector
quantization of residuals and frequency domain reconstruc-
tion loss to lower bit rates while effectively reducing distor-
tion and artifacts.

2.2 Audio Application
2.2.1 Speech Emotion Recognition
Speech emotion recognition has been studied for multi-
ple decades within both the machine learning and speech
communities. In alignment with the prevailing research
approach, scholars extract feature insights from audio data
and subsequently employ these insights across a range
of classifiers [14], [15], [16]. Much of the aforementioned
works relied on context to furnish additional information
for correcting and inferring emotional content extracted
from the data. The mining and analysis of emotional in-
formation from single-sentence audio data can pose more
significant challenges. Xu et al. [23] introduced an attention-
based network designed for aligning textual and audio
information, along with feature extraction. Delbrouck [21]
et al. proposed a transformer-based joint-encoding model
called UMNOS for single-sentence emotion recognition and
sentiment analysis.

2.2.2 Automatic Speech Recognition
Recent advances in deep learning have greatly improved
automatic speech recognition (ASR). Modern end-to-end
ASR systems typically consist of an encoder that extracts
high-level acoustic features from input audio, followed by a
decoder that transforms these features into text sequences.
End-to-end deep CNN models were initially explored in [24]
and subsequently enhanced with depth-wise separable con-
volutions [25] and the Squeeze-and-Excitation module [26].
However, CNNs often struggle to capture global contexts
effectively, transformer models [27] have been widely incor-
porated into backbone architectures due to their capability
to capture long-range dependencies between speech frames
[12], [13].

2.2.3 Audio Classification
Recent advancements in audio classification have demon-
strated the effectiveness of various architectures and mod-
els. CNN architectures [17] are highly effective for large-
scale audio classification tasks. Palanisamy [18] shows that
ImageNet-pretrained deep CNN models are effective for
audio classification. Causal Audio Transformer (CAT) [19] is
designed specifically for audio classification with optimized
features and a causal module. Zhu et al. [28] introduce
the Multiscale Audio Spectrogram Transformer (MAST) to
efficiently generate more semantically distinct feature repre-
sentations.

3 PRELIMINARY STUDY
3.1 Mel-spectrogram Based Application
Mel Spectrum transforms the spectrum based on the Mel
scale, converting the spectral information of an audio sig-
nal into a representation that is more compatible with the
auditory properties of the human ear [29]. The spectral
information in the high-frequency part is more aggregated,
while the spectral information in the low-frequency part is
more detailed. It is commonly used in speech recognition
[30], [31], speech emotion recognition [32], [33], and audio
classification [17], [18], [19]. The Mel spectrum is more com-
pact and efficient than the original audio, thus we attempt to
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explore the extreme compression of audio streaming based
on the Mel fbank spectrum.

3.2 Mel-spectrogram Compression
In recent years, neural network-based compression meth-
ods [8], [9], [34], [35], [36] have emerged and been applied
to compress various media files, such as images, audio,
and video. Compared to traditional compression techniques
such as JPEG, MP3, and H.264/AVC, these neural network-
driven approaches have demonstrated significant improve-
ments in both compression efficiency and reconstruction
quality. Given that the Mel-spectrogram features of audio
are represented as two-dimensional vectors analogous to
images, we employ a lossy compression technique, akin to
those used in image compression [37], [38], [39], to achieve
an efficient compression of the Mel-spectrogram.

3.2.1 Quantization-based Compression
During the compression of Mel-spectrogram features, quan-
tization is utilized to reduce the amount of information
required for storage or transmission, though this process
also introduces errors. Moreover, this quantization is not
performed directly on the 2D vector of Mel-spectrogram
features. Instead, a latent representation of that vector is
identified, i.e., a vector r in another space, which is then
quantized to produce the discrete vector r̂. The discrete
vector r̂ can be losslessly compressed using entropy coding
methods [29], [40], [41], generating a bitstream that can be
stored or transmitted over a channel. Entropy coding relies
on a priori probability models of the quantized representa-
tion (i.e., the entropy model for Mel-spectrogram coding),
which are known to both the encoder and decoder of the
entropy model.

3.2.2 Entropy model for Mel-spectrogram Coding
The entropy model for Mel-spectrogram coding is used
to measure the redundancy of information of Mel-
spectrogram’s latent representation feature. For the latent
vector r of the Mel-spectrogram, which consists of two
dimensions, the feature dimension and the temporal di-
mension. Considering that the feature dimensions have a
fixed length (as derived from the fixed feature dimensions of
the Mel-spectrogram), we sequentially encode each feature
dimension. We assume that each feature dimension j fol-
lows a continuous probability distribution Pj . All points on
feature dimension j, rj1, rj2, . . . , rjn, are defined to belong
to independent probability distributions pj1, pj2, . . . , pjn (n
is the width of the time dimension). As shown in Fig. 2, the
probability distributions pji are all nearly Gaussian, so we
have the following approximation:

pji ≈ N (µji, σ
2
ji) (1)

Pj is a mixed probability distribution of pji:

Pj ≈
n∑

i=0

1

n
N (µji, σ

2
ji) (2)

The entropy H(rj) of the latent vector rj on feature dimen-
sion j is defined as:

H(rj) = −
∑

Pj(rj)log2Pj(rj) (3)

Fig. 2: The probability density function, statistically ob-
tained from three points of rji on the dataset, approximates
a Gaussian distribution. Each rji has a different probabil-
ity density function approximating a Gaussian distribution
N (µji, σ

2
ji).

According to the Shannon–Fano coding theorem or
Huffman coding [42], the average code length La for
encoding a symbol (in this case, a feature value rji) is related
to its entropy. For optimal (prefix) codes, the average code
length La is approximately equal to the entropy:

La ≈ H(rj) (4)

This implies that when the entropy H(rj) is low (i.e., the
feature values are highly predictable or redundant), the
average code length will also be small. Conversely, a higher
entropy, signifying less redundancy, results in a larger aver-
age code length. To minimize the average encoding length
as much as possible, it is necessary to reduce the entropy of
the feature values. An effective approach for achieving this
is to normalize each variable along the temporal dimension:

r̃ji =
rji − µji

σji
, r̃ji ∼ N (0, 1) (5)

The normalized mixed probability distribution and the en-
tropy are as follows:

P̃j ≈ N (0, 1), H̃(r̃j) = −
∑

P̃j(r̃j)log2P̃j(r̃j) << H(rj)
(6)

Subsequently, we quantize the normalized latent features r̃
to obtain r̂ and employ entropy coding methods to achieve
an average encoding length La that approximates the en-
tropy.

4 AUCOM ARCHITECTURE

4.1 System Overview
The system overview of AUCOM, as illustrated in Fig. 3,
outlines a edge-to-server audio streaming architecture that
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Fig. 3: The cloud-edge audio streaming architecture of AUCOM

efficiently processes, compresses, and transmits audio sig-
nals from the edge to the server for various applications.
The architecture is divided into four main stages: Signal
Processing, Compression, Decompression, and Application:

• Signal Processing (Edge): On edge devices, audio sig-
nals captured via microphones undergo preprocessing
(e.g., resampling, normalization). In noisy conditions,
signals are processed through a speech enhancement
module for noise reduction before Mel-frequency filter
bank (Mel-Fbank) feature extraction. In clean environ-
ments, signals bypass enhancement, enabling adaptive,
resource-efficient feature extraction based on noise lev-
els.

• Compression (Edge): In this stage, the normalized fea-
tures are compressed using a series of transformations
on the edge device. An analytic transform, incorporat-
ing Bi-LSTM networks and CNN blocks is applied. The
resulting data is further normalized, quantified, and
encoded by an entropy encoder to generate a compact
bit stream.

• Decompression (Server): The bit stream is transmitted
to the server, where it is decoded using an entropy
decoder. The decompressed data undergoes an inverse
normalization and is subsequently subjected to a syn-
thesis transform using Bi-LSTM and CNN blocks to
recover the Mel fbank spectral features.

• Application ((Server): The decompressed audio features
are then utilized for various applications such as speech
recognition, speech emotion analysis, and audio classi-
fication. Additionally, the audio features can be stored
in the server for further processing.

4.2 Audio Signal Processing

After recording with the microphone on the edge, AUCOM
first process the audio. Considering that most mobile ap-
plications on edge devices use a 44.1 kHz sample rate as
the default configuration to record audio, but that a 16
kHz sample rate is sufficient for most audio application
scenarios, we resample the 44.1 kHz audio signal to 16
kHz. This approach ensures audio quality while reducing
the discrete Fourier transform’s computational load by a
factor of approximately 2.76× floating-point operations [43].

The audio signal is then normalized, typically to ensure a
consistent amplitude range, often between -1 and 1.

4.2.1 Audio Enhancement
AUCOM use microphones to capture audio information and
convert it to a discrete digital signal. However, after record-
ing, the audio may contain background noise and micro-
phone self-noise, which can degrade its quality. To address
this, we apply audio enhancement techniques to suppress
noise and improve the signal-to-noise ratio (SNR) [44], re-
sulting in higher-quality audio. This, in turn, enhances the
accuracy of downstream tasks.

Existing audio enhancement methods can be broadly cat-
egorized into two classes: time-domain and time-frequency
(TF) domain approaches. Time-domain audio enhancement
methods [45], [46], [47], [48], [49] leverage neural networks
to learn a mapping from noisy waveforms to clean wave-
forms. However, these methods face challenges in effec-
tively utilizing spectral information, which can lead to in-
creased signal distortion. Additionally, they exhibit weak
long-term dependency modeling, limited capability in han-
dling non-stationary noise, high computational costs, and
poor generalization to unseen noise conditions. In contrast,
time-frequency (TF) domain audio enhancement methods
have demonstrated superior performance. These methods
aim to predict clean frame-level TF representations and
subsequently reconstruct the enhanced waveform, effec-
tively leveraging spectral information for improved noise
suppression and audio quality.

Time-frequency domain audio enhancement methods
convert the audio signal into time-frequency features using
the Short-Time Fourier Transform (STFT). After processing
these features, the enhanced audio signal is then recon-
structed, enabling noise reduction and overall audio en-
hancement. For example, due to the phase spectrum’s wrap-
ping and non-structured nature, enhancing it is challenging.
Thus, some approaches [50], [51], [52], [53] focus solely
on magnitude spectrum enhancement, reconstructing the
waveform using the Inverse Short-Time Fourier Transform
(ISTFT) with the enhanced magnitude and the original noisy
phase. Meanwhile, other approaches [54], [55], [56], [57]
bypass this issue by directly enhancing the real and imagi-
nary parts of the time-frequency features in the complex do-
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main, thereby reconstructing high-quality audio. However,
enhancing both magnitude and phase directly provides a
more accurate and natural signal reconstruction, improves
audio quality by preserving the temporal structure, ensures
phase integrity, and offers a more consistent enhancement
compared to separately enhancing the real and imaginary
parts in the time-frequency domain [58]. Consequently, sim-
ilar to works [59], [60], [61], [62], [63], we convert the audio
signal into a time-frequency representation using the STFT,
perform denoising on both the magnitude and phase spectra
simultaneously, and then reconstruct the enhanced speech
signal with improved quality.

Next, we will introduce our proposed specific network
model AUCOMSENET and training methods.

4.2.1.1 AUCOMSENET: As shown in Fig. 4, we pro-
vide an overview of the proposed AUCOMSENET model
architecture. The AUCOMSENET network uses an encoder-
decoder structure to denoise noisy audio An ∈ RL in the TF
domain and recover the clean speech signal Ac ∈ RL where
L is the signal length. Specifically, we first apply STFT to
transform the audio signal into the TF domain, obtaining the
magnitude spectrum XM ∈ RTx×Fx and phase spectrum
XP ∈ RTx×Fx , where Tx and Fx represent the total num-
ber of frames and frequency bins, respectively. To achieve
more accurate denoising of the magnitude spectrum, we
apply power-law compression, resulting in the compressed
magnitude spectrum X̂M = Xr

M , where r ∈ [0, 1] is 0.3
by default. Next, we concatenate XM and XP to obtain
Xin ∈ R2×Tx×Fx , and use the encoder Eae to extract
the time-frequency domain representation from Xin. In the
encoder Eae, we employ the Performer [64] architecture to
progressively capture both temporal and spectral depen-
dencies at each stage. Finally, we simultaneously predict
the magnitude spectrum mask Mx and the clean phase
spectrum X̃P using parallel magnitude mask and phase
decoders. The clean magnitude spectrum is obtained as
X̃M = (Mx · X̂M )

1
r and, together with the clean phase

spectrum X̃P , is used to reconstruct the high-quality audio
signal Ãc. In addition, we employ a GAN-based [65] ap-
proach to train our model, utilizing a metric discriminator
to assist in the training process. Next, we provide a detailed
introduction to the architecture of the encoder and decoder
in our network model.

4.2.1.2 Details of AUCOMSENET Encoder.: As
shown in Fig. 5, our encoder module Eae extracts effective
representations Eae(Xin) ∈ RNx×Tx×Fx

2 from the input
Xin in the TF domain (Nx is 64 by default). The network ar-
chitecture is centered around the Wavelet Transform Dense
Block (WTDenseBlock), designed to effectively capture local
and multi-scale features that are crucial for representing
complex audio TF characteristics. Specifically, the Encoder
consists of the following components:

Initial Convolutional Layer: The layer consists of a
convolutional block to expand the feature dimensionality
of Nx, followed by instance normalization [66] for training
stability and a PReLU activation [67] to introduce non-
linearity, thereby enhancing the model’s ability to capture
complex patterns.

Wavelet-Transformed Dense Block (WTDenseBlock):
As shown in Fig. 7, the WTDenseBlock integrates dense

connections [68] with wavelet-based convolutions [69] to
enhance hierarchical feature reuse and multi-resolution
analysis. Each layer begins with a convolutional block to
capture spatial dependencies, followed by a GELU acti-
vation function to introduce non-linearity. Subsequently,
a wavelet transform convolution (WTConv2d) is applied
to extract multi-scale features, effectively expanding the
receptive field and improving both the model’s robust-
ness and computational efficiency. Instance normalization
is employed to stabilize the training process, while PReLU
activation enhances model adaptability. For the i-th layer
of the WTDenseBlock, the forward propagation process is
defined as follows: The forward pass is:

xi+1 = PReLU(IN(WTConv2d(GeLU(Conv2d(xi)))))
(7)

The output xi+1 of the i-th layer is concatenated with its
input xi, and the combined feature map is passed to the (i+
1)-th layer, enhancing information flow, promoting feature
reuse, and mitigating the vanishing gradient problem.

Downsampling Convolutional Layer: This layer first
applies a convolutional block to reduce the frequency di-
mension of the features, with a default downsampling factor
of 2. This is followed by instance normalization and PReLU
activation to obtain the output Xd

in ∈ RNx×Tx×Fx
2 .

Times Performer and Frequency Performer. The input
tensor Xd

in ∈ RNx×Tx×Fx
2 is reshaped for temporal atten-

tion using the PerformerBlock [64], which operates with
4 attention heads and an input dimensionality of 64. The
resulting features are integrated via a residual connection
to enhance temporal representation. The output is then
reshaped for frequency-domain attention, again leveraging
the same PerformerBlock configuration, and combined with
the input through another residual connection to reinforce
frequency feature learning. Finally, the tensor is reshaped to
its original dimensions, Nx × Tx × Fx

2 . This dual-attention
mechanism effectively captures temporal and spectral de-
pendencies, improving the model’s ability to handle sequen-
tial and frequency variations.

4.2.1.3 Details of AUCOMSENET Magnitude Mask
Decoder.: As illustrated in Fig. 6, The magnitude mask de-
coder predicts the magnitude mask Mx from the TF domain
representation and multiplies it with the noisy magnitude
spectrum X̂M to obtain the clean magnitude spectrum X̃M .
For the input Eae(Xin) from the encoder, the magnitude
mask module first applies a WTDenseBlock to extract rich
hierarchical features. Subsequently, transposed convolution
is employed to upsample the feature map, restoring the
original frequency dimension. This process helps recover
detailed spectral information lost during the downsampling
operations in the encoder. Next are instance normalization
and the PReLU layer After these operations, a final convo-
lutional layer is used to reduce the feature dimension from
Nx to 1, effectively condensing the multi-channel feature
representations into a single-channel magnitude mask M̂x.
To achieve precise and adaptive magnitude mask predic-
tion, we further adopt a learnable sigmoid (LSigmoid) [70]
activation function, defined as:

Mx =
W

1 + e1−bM̂x

(8)
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Fig. 4: Detailed framework of our audio enhancement model AUCOMSENET

Encoder 

Co
nv

 B
lo

ck

In
st

an
ce

N
or

m

PR
eL

U

W
TD

en
se

 
Bl

oc
k

Co
nv

 B
lo

ck

In
st

an
ce

N
or

m

PR
eL

U

Ti
m

e 
Pe

rf
or

m
er

Fr
eq

ue
nc

y 
Pe

rf
or

m
er

Fig. 5: AUCOMSENET Encoder

Magnitude Mask Decoder 

W
TD

en
se

 
Bl

oc
k

Tr
an

sp
os

ed
 

Co
nv

 B
lo

ck

In
st

an
ce

N
or

m

PR
eL

U

Co
nv

 B
lo

ck

LS
ig

m
oi

d

Fig. 6: Magnitude Mask Decoder

WTDense Block 

Co
nv

 B
lo

ck

In
st

an
ce

N
or

m

PR
eL

U

W
TC

on
v 

Bl
oc

k

Ge
LU

Fig. 7: WTDense Block

Phase Decoder 

W
TD

en
se

 
Bl

oc
k

Tr
an

sp
os

ed
 

Co
nv

 B
lo

ck

In
st

an
ce

N
or

m

PR
eL

U

At
an

2

Co
nv

 B
lo

ck

Fig. 8: Phase Decoder

Co
nv

 B
lo

ck

In
st

an
ce

N
or

m

PR
eL

U

Ad
ap

tiv
e 

M
ax

Po
ol

Fl
at

te
n

Li
ne

ar
 L

ay
er

Dr
op

ou
t

PR
eL

U

Li
ne

ar
 L

ay
er

LS
ig

m
oi

d

Metric Discriminator 

Fig. 9: AUCOMSENET Metric Discriminator.

where W = 2.0 and b ∈ R1×F are learnable parameters.
Unlike the standard sigmoid function, LSigmoid introduces
learnable parameters that allow the model to adjust the
non-linearity dynamically, thereby improving its capacity to
capture subtle variations in the audio signal.

4.2.1.4 Details of AUCOMSENET Phase Decoder.:
As illustrated in Fig. 8, the phase decoder directly pre-
dicts the clean phase spectrum X̃P from the TF domain
representation. For the input Eae(Xin) from the encoder,
the phase decoder first applies a WTDenseBlock to extract
rich hierarchical time-frequency features. Following feature
extraction, two separate convolutional blocks are employed
to predict the real part X̃r

P and the imaginary part X̃i
P

of the phase spectrum, respectively. This separation allows
the network to model the distinct characteristics of each
component more effectively, enabling better representation
of the underlying phase information. To reconstruct the
clean phase spectrum, we apply a bi-parametric arctangent
function (atan2), defined as:

X̃P = atan2(X̃i
P , X̃

r
P )

= arctan

(
X̃i

P

X̃r
P

)
+ π · 1− sgn§(X̃r

P )

2
· sgn§(X̃i

P )
(9)

where sgn(x)§ is a redefined function which equals to 1
when x ≥ 0, and equals to -1 when x < 0. The atan2
function computes the angle of the complex number formed
by Xr

p and Xi
p, ensuring accurate phase estimation across

the full range of −π to π. This formulation provides ro-

bustness in handling phase discontinuities and improves the
phase reconstruction quality. Modeling real and imaginary
components with the atan2 function, the phase decoder
improves phase estimation, enabling high-fidelity audio
reconstruction in noisy environments.

4.2.1.5 Details of AUCOMSENET Metric Discrimina-
tor.: The Metric Discriminator evaluates feature similarity
between magnitude spectrum pairs, as shown in Fig. 9,
predicting a similarity score aligned with the scaled PESQ
(Perceptual Evaluation of Speech Quality in ITU-T Recom-
mendation P.862. Unlike conventional distortion measures
such as MSE or SNR, PESQ is a model-based evaluation
algorithm without a simple closed-form mathematical ex-
pression. Instead, it consists of a multi-stage processing
pipeline, including signal preprocessing, temporal align-
ment via time warping, frequency domain transformation
using perceptual Bark-scale filters, perceptual distortion
modeling, and nonlinear mapping to generate a final quality
score ranging from −0.5 to 4.5.) [71] metric. It consists of
four convolutional blocks with instance normalization and
PReLU activation for stable, hierarchical feature learning.
An adaptive max-pooling layer reduces spatial dimensions,
followed by flattening and two spectral normalized linear
layers. A dropout layer (0.3 rate) after the first linear layer
prevents overfitting, with PReLU introducing non-linearity.
Finally, a learnable sigmoid activation outputs a similarity
score between 0 and 1.

4.2.1.6 Training Strategies: We adopt a GAN-based
approach to train the model. First, we train the discrimina-
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tor, which is designed to evaluate the perceptual quality of
the audio. We rescale the PESQ scores to the range of (0, 1)
and use them as target values to train the discriminator. The
discriminator takes pairs of clean and predicted enhanced
magnitude spectra (Respectively represented as YM and
X̃M ) as input and is trained to output the scaled PESQ
scores, effectively learning to assess the perceptual quality
of the enhanced audio:

LMD = ||MD(X̃M , YM )−Qpesq(Ac, sg[Ãc])||22
+ ||MD(YM , YM )− 1||22

(10)

where sg[·] is the stop gradient operator, MD denotes
the metric discriminator and Qpesq = PESQ(·)−1

3.5 denotes
the scaled PESQ score and PESQ [71] is an objective metric
used to evaluate the quality of speech signals.

Next, we train the generator. To measure the difference
between the generated audio and the clean audio, we utilize
a combination of loss functions, including the magnitude
spectrum difference, the time-domain waveform difference,
and the complex-valued difference in the TF domain:

Ltime = ||Ac − Ãc||1,Lmag = ||X̃M − YM ||22
Lcomplex = ||STFT (Ac).real − STFT (Ãc).real||22

+||STFT (Ac).imag − STFT (Ãc).imag||22

(11)

These complementary loss functions help the generator
learn to produce high-quality audio that closely resembles
the clean reference, both in spectral content and temporal
structure. Subsequently, we leverage the discriminator to
generate a metric loss:

Lmetric = ||MD(X̃M , YM )− 1||22 (12)

This adversarial training process encourages the generator
to optimize not only for signal fidelity but also for percep-
tual quality.

Finally, consistent with the anti-wrapping loss [63], [72],
we define three phase-specific loss functions to optimize the
phase spectrum: the instantaneous phase loss, the group
delay loss, and the instantaneous angular frequency loss.
The core component of these losses is the anti-wrapping
function, defined as

FAWL(x) = |x− round(
x

2π
· 2π)| (13)

This function effectively maps phase differences to the prin-
cipal range, mitigating the effects of phase discontinuities.
The instantaneous phase loss measures the direct phase
difference between the predicted phase and the ground
truth phase:

Lip = ||FAWL(X̃M − YM )||1 (14)

By applying the anti-wrapping function, this loss penalizes
large phase discrepancies, ensuring phase alignment across
the dataset. The group delay loss evaluates the difference in
temporal phase gradients (first-order differences along the
time dimension) between the predicted and ground truth
phases:

Lgd = ||FAWL(△DT (X̃M )−△DT (YM ))||1 (15)

where △DT represents the first-order difference along the
time dimension, measuring the rate of change in phase

over time. This loss promotes temporal smoothness and
consistency, crucial for time-dependent applications. The
instantaneous angular frequency loss focuses on frequency-
domain phase gradients, computed as first-order differences
along the frequency dimension:

Liaf = ||FAWL(△DF (X̃M )−△DF (YM ))||1 (16)

where △DF represents the first-order difference along the
frequency dimension, capturing the rate of change in phase
across different frequency bins. This loss helps preserve
spectral coherence, ensuring that the frequency character-
istics of the predicted output align with the ground truth.

Therefore, the final loss function for the generator is for-
mulated as a weighted sum of the aforementioned loss com-
ponents, integrating magnitude, time-domain, complex-
valued, metric, and phase-specific losses. The overall ob-
jective function is defined as:

Ltotal =λ1Lmag + λ2Ltime+

λ3Lcomplex + λ4Lmetric + λ5Lphase total
(17)

where
Lphase total = Lgd + Lip + Liaf (18)

the coefficients λ1, λ2, λ3, λ4, and λ5 are hyperparameters
that control the relative contributions of each loss term
and are set to (0.9,0.2,0.1,0.05 and 0.3) by default, allowing
for flexible adjustment to balance signal fidelity, perceptual
quality, and phase consistency in the generated audio.

4.2.2 Mel Fbank Feature Extraction
We then extract the Mel filter bank spectrogram features
from the audio. Beginning with framing and windowing,
the audio signal is divided into overlapping frames, and
each frame is multiplied by a window function, such as
a Hamming or Hanning window, to minimize spectral
leakage which occurs when signal discontinuities distort the
frequency spectrum. Next, the framed and windowed signal
undergoes the STFT, which converts the signal from the time
domain to the frequency domain, resulting in a spectrogram
that represents the signal’s frequency content over time. The
spectrogram is then transformed into a Mel spectrogram
by applying a set of Mel filter banks that compress the
frequency axis to a Mel scale, a scale that approximates the
way humans perceive pitch. Finally, log scaling is applied
to the Mel spectrogram to reduce the dynamic range, which
enhances the perceptual loudness of the sounds and makes
the quieter parts of the audio more distinguishable. After the
process described above, for standard mobile device audio
(typically with a 44.1 kHz sample rate, 16-bit bit depth, and
dual channels), the filterbank converts it into a matrix of size
H × L, where H is typically 80 or 128 for higher frequency
resolution, L is 100× T , and T is the duration of the audio
(default unit is s). This matrix represents a Mel filter bank
feature.

4.3 Compression Model
In this section, we introduce the neural network-based
compression model, AUCOMNET. As shown in Fig. 10, the
compression model consists of two parts: the compression
module on the edge and the decompression module on the
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Fig. 10: Detailed framework of our compression model AuComNet

server. Similar to the transform coding approach to image
compression [73], the encoder employs stacked nonlinear
neural network modules to transform the fbank features
f into potential representations r. Subsequently, r is nor-
malized and quantized into its discrete form r̂. This value
can then be losslessly compressed using entropy coding
techniques such as arithmetic coding [74] and Huffman
coding, and stored or transmitted as a sequence of bits.
Then, the decompression module recovers r̂ from the com-
pressed signal sequence and applies inverse normalization
and parametric synthesis transform to reconstruct the fbank
feature f̂ .

Next, we provide a detailed description of the model.

4.3.1 Compression Module on Edge

As mentioned in the previous Sec. 3.2, the compression
module deployed on the edge mainly consists of the para-
metric analytic transform function hf , the quantization op-
erator Q, and the entropy encoders. For the input fbank
feature f ∈ R1×H×L, hf is first used for feature extraction
via a bidirectional LSTM structure [75]. Immediately there-
after, the features are processed and downsampled using
a convolutional neural network. Meanwhile, a non-linear
transformation called Generalized Divisive Normalization
(GDN) [76] is applied between convolutional blocks. The
primary function of the GDN module is to apply a form
of local normalization that helps the network learn more
efficient and compact representations of data. Eventually,
hf outputs the feature r = hf (f ; θf ) ∈ RM×H

4 ×L
4 (θf

represents the optimizable parameters of the function hf

and M represents the number of output channels in the final
convolutional block, with a default value of 2).

As mentioned in the previous Sec. 3.2, we normalize r
before the quantization operator rounds r for quantization.
We dynamically record the mean and variance of each point-
independent probability distribution using the means table
and the standard deviations table. After network optimiza-
tion, the final values are calculated on the training set and
saved. Finally, we encode the discrete matrix r̂ ∈ RM×H

4 ×L
4

using an entropy encoder. We first reshape r̂ to the form
HM
4 × L

4 , i.e., two dimensions: feature dimension and tem-
poral dimension. Each feature dimension is then encoded
by Huffman coding [41]. The encoding algorithm is inde-
pendent of model training and is applied only during the

actual use of the model. We provide a detailed description
of it in Sec. 4.3.4.

4.3.2 Decompression Module on Server
The decompression module, deployed on the server, is
structured symmetrically to the compression module. It
includes the entropy decoders and the parametric synthesis
transform hb. The entropy decoder decodes the byte stream
into a discrete matrix r̂, which is then inverse normalized,
reshaped as M × H

4 × L
4 , and input into the transformation

hb. hb first up-samples r̂ using an inverse convolutional
neural network containing the IGDN module. The Inverse
Generalized Divisive Normalization (IGDN) is the inverse
operation of the Generalized Divisive Normalization (GDN)
and essentially reverses the normalization effect applied by
GDN, helping to reconstruct the original signal from its
compressed form. A bidirectional LSTM structure is then
used to process the upsampled features and reconstruct
them to obtain the Mel-spectrogram feature f̂ = hb(r̂; θb)
(θb represents the optimizable parameters of the function
hb).

4.3.3 Rate-Distortion Optimization Approach for Compres-
sion Model
The compression module introduces information distortion,
with the quantization process in particular introducing
error. Distortion refers to the difference between the re-
constructed Mel-spectrogram features f̂ and the original
features f , which is quantified using the squared l2-norm
as follows:

LD =
∑
i

(f̂i − fi)
2 (19)

This distortion is tolerable within lossy compression
schemes and is expected to exhibit a negative correlation
with the compression bit rate, meaning that as the bit
rate decreases, the error increases. We define the expected
encoding length of the compressed features as R (i.e., the
bit rate). Based on the discussion in Sec. 3.2, assuming the
entropy coding technique is executed effectively, the bit rate
R can be expressed as the cross-entropy:

R ≈ Ef∼Pf
[−log2Pr̂(r̂)] = Ef∼Pf

[−log2Pr̂(Q(r̃))] (20)

It is worth noting that during training, we dynamically
record the mean and variance of the latent representation r
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across feature dimensions using learnable parameters, and
normalize it to obtain r̃.

For the optimization of the compression model, our goal
is to find an optimal parametric analysis transformation
function hf (·; θf ), and a parametric synthesis transforma-
tion function hb(·; θb), to balance the estimated bit rate R
and reconstruction distortion LD . Therefore, we optimize
the compression model using gradient descent, with the loss
function defined as follows:

L = R+ λLD (21)

where λ is the rate-controlling hyper-parameter.
To enable the use of gradient descent methods for

optimizing the model’s performance with the transform
parameters θf and θb, the optimization problem must be
relaxed. This relaxation is necessary because quantization
often results in gradients for θf being nearly zero. Consider-
ing that the investigated approximations include replacing
the gradient of the quantizer [77] or using additive uniform
noise in place of the quantizer during training [76], we
adopt the latter approach, reverting to actual quantization
when the model is applied outside of the training state. That
is, during model training, the quantization operator does
not round the latent representation r but instead applies
uniform noise to it. However, when the model is being
tested or used, the quantization operator rounds the latent
representation r:

r̂ = Q(r̃) =

{
r̃ + noise, training = True
round(r̃), training = False

(22)

where noise ∼ U(−0.5, 0.5) by default. After applying
uniform noise to the latent representation, we incorporate
the noise into the prior model as well:

Pr̂ = (P ∗ U(−0.5, 0.5))(r̂)

=

∫ ∞

−∞
P (r̃)U(r̂ − r̃| − 0.5, 0.5)dr̃

=

∫ r̂+0.5

r̂−0.5
P (r̃)dr̃

= F(r̂ + 0.5)−F(r̂ − 0.5)

(23)

where F(·) is the cumulative of the underlying density
model. We use a parametric model to approximate the
cumulative density function Fj(·) of different feature di-
mensions j:

fm
j = Am−1fm−1

j +Bm−1

+ Cm−1 ⊙ tanh(Am−1fm−1
j +Bm−1)

Fj = Sigmoid(AMfM
j +BM )

(24)

where A,B,C are all learnable parameters, m represents the
number of layers in the parametric model, with 1 ≤ m ≤
M , and f0

j (·) is the identity function. At this point, we can
optimize the compression model using gradient descent.

4.3.4 Huffman coding
Huffman coding is a lossless data compression algorithm
that assigns variable-length codes to input characters, with
shorter codes assigned to more frequent characters. After
completing model training, we transformed all the data in
the training set into the corresponding latent representation

r and calculated its mean and variance at each position
for normalization. After completing the normalization, we
calculate the probability density function for each coded
channel based on the training set data and build a Huffman
tree. Note that we need to record both the minimum and
maximum values for each channel and constrain the upper
and lower limits of the test data before applying Huffman
coding. Additionally, to achieve a smaller coding bit rate,
we introduce an extra parameter τ , which performs an addi-
tional division operation on the normalized latent vector r̃ to
obtain r̃

τ before quantification and encoding. As τ increases,
the coding bit rate decreases. However, this also leads to
greater information loss, resulting in an increased error in
recovering the feature f̂ .

5 EVALUATION

5.1 Experimental Setup

We implemented the AUCOM system on several Android
phones (i.e., Xiaomi 11 Pro, vivo X80, Huawei nova 12,
Google Pixel 6 pro, and Honor X40 GT), as well as on a
server equipped with an NVIDIA Tesla A800 and 20 Mbps
bandwidth.

5.1.1 Datasets and evaluation metrics

For various audio applications, we use the following
datasets to evaluate the specific performance of AUCOM
system.

5.1.1.1 Audio Enhancement.: We evaluate the au-
dio enhancement module’s performance using both ob-
jective metrics and perceptual measures on the Voice-
Bank+DEMAND dataset [78]. VoiceBank+DEMAND: This
benchmark combines clean speech from the Voice Bank
Corpus with real-world noise from the DEMAND dataset,
featuring 28 speakers (14 male, 14 female), with 10 for train-
ing and 2 unseen speakers for testing. Noisy speech is gener-
ated by mixing clean utterances with various environmental
noises at SNRs of 0, 5, 10, 15 dB (training) and 2.5, 7.5,
12.5, 17.5 dB (testing). We assess our AUCOMSENET model
using PESQ, CSIG, CBAK, COVL, SSNR, and STOI metrics.
PESQ (Perceptual Evaluation of Speech Quality) [71]: An
objective metric simulating human auditory perception to
compare clean and degraded speech quality. CSIG (Signal
Distortion Ratio): An objective metric predicting subjective
signal distortion, which evaluates how closely enhanced
speech resembles clean speech in terms of perceived signal
distortion reduction. CBAK (Background Noise Intrusive-
ness): An objective metric predicting subjective background
noise intrusiveness, assessing the effectiveness of noise re-
duction while preserving speech clarity. COVL (Overall
Speech Quality): An objective metric predicting overall
subjective speech quality, combining signal distortion and
background noise suppression to reflect naturalness and
intelligibility. SSNR (Segmental Signal-to-Noise Ratio): An
objective metric calculating SNR for short segments to assess
detailed noise suppression performance. STOI (Short-Time
Objective Intelligibility): An objective metric measuring
speech intelligibility in noisy conditions by comparing clean
and processed signals in time-frequency domains.
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5.1.1.2 Automatic Speech Recognition:
LibriSpeech [31]: A benchmark dataset for speech
recognition, containing around 1,000 hours of English
audiobook recordings from LibriVox, with high-quality
segmented audio and corresponding transcriptions for ASR
system training and evaluation. LJSpeech [30]: A popular
ASR dataset with 24 hours of high-quality recordings from
a single female speaker reading non-fiction texts. It contains
13,100 short audio clips paired with transcriptions, valued
for its consistency in speaker and recording quality.

Word Error Rate (WER) is a standard ASR accuracy
metric, measuring transcription errors—substitutions, inser-
tions, and deletions—relative to the reference transcription:

WER =
Substitutions+ Insertions+Deletions

TotalWords inReference
(25)

As detailed in Sec. 4.2, we converted audio from both
datasets into Mel filter bank spectrograms and jointly
trained the compression model. During testing, the Whisper
model evaluates WER on each dataset’s test set across
different compression rates.

5.1.1.3 Speech Emotion Recognition: IEMOCAP:
Interactive Emotional Dyadic Motion Capture (IEMO-
CAP) [32] is a widely used multimodal dataset for emo-
tion recognition, containing 12 hours of audio-visual data,
including speech, facial expressions, and body gestures.
For speech emotion recognition, we utilize only the audio
component. VCEMO [33] is a large-scale Chinese corpus
for single-sentence emotion recognition, featuring diverse
voiceprints and text from over 100 speakers. It captures real-
world speech with varied accents and language features. We
tested the system’s accuracy in recognizing four emotions
(i.e., angry, happy/excited, sad, and neutral) using IEMO-
CAP and VCEMO.

5.1.1.4 Audio Classification: Audio Set [79] is a
large-scale dataset for audio event detection and classifica-
tion, containing over 2 million 10-second clips from YouTube
labeled with 500+ audio event classes, including speech,
music, animal sounds, and environmental noises. It serves
as a benchmark for audio classification tasks. The AST
model was pre-trained on the AudioSet dataset and used to
evaluate the AUCOM system’s audio classification accuracy
on the following two datasets: ESC-50: [80] ESC-50 is a
dataset of 2,000 environmental audio clips, organized into 50
classes with 40 clips each. Each 5-second clip is sourced from
public sound databases, offering diverse ambient sounds,
making it widely used for audio classification tasks. Speech
Commands: [81] Speech Commands by Google contains
thousands of 1-second audio clips of 35 common words
(e.g., ”yes,” ”no,” ”stop”) recorded by various speakers.
It serves as a standard benchmark for audio classification
accuracy.

5.2 Implementation Details

For our AUCOMSENET, all audio samples are resampled
to 16 kHz. The input features are extracted from the raw
waveform using the STFT, with the number of FFT points,
Hanning window length, and hop size configured to 400,

400 samples (25 ms), and 100 samples (6.25 ms), respec-
tively. Model training is conducted using the AdamW op-
timizer [82] for a maximum of 100 epochs, with an initial
learning rate of 0.0005, which is reduced by a factor of 0.5
every 30 epochs to facilitate convergence.

Meanwhile, in our experiments of AUCOMNET, we uti-
lized the Adam optimizer [83] to train the model for 100
epochs on an NVIDIA Tesla A800 GPU. The Adam opti-
mizer is chosen due to its adaptive learning rate mecha-
nism, which computes individual learning rates for different
parameters. Specifically, the optimizer was initialized with
a learning rate of 1e − 4, with β1 = 0.9, β2 = 0.999
and ϵ = 1e − 8. To enhance the convergence and perfor-
mance of the model, we employed a learning rate scheduler,
specifically the MultiStepLR scheduler [84]. The scheduler
decreases the learning rate by a factor of 0.1 at predefined
epochs, specifically at the 40th and 80th epochs. The batch
size of the training phase is 64, and audio data is divided
into 5s chunks as inputs.

We modified the convolutional block parameter M of
AuComNet and the hidden layer size Hs of the Bi-LSTM
to construct three models with different configurations:
AuComNet-v1 (M = 2,Hs = H

2 ), AuComNet-v2 (M =
1, Hs = H

2 ), and AuComNet-v3 (M = 1, Hs = H
4 ), each

corresponding to a different target bit rate. The AUCOM
system selects the appropriate AuComNet variant based on
the target compression rate, ensuring efficient execution of
audio tasks.

For on-device evaluation, we export the trained Py-
Torch [85] encoder to ONNX [86] format and deploy them
in an Android Studio [87] environment. The models are exe-
cuted using the default inference backend without enabling
GPU acceleration, i.e., the computations are performed
solely on the CPU. This design choice is intentional, as our
goal is to develop a general-purpose audio compression
system that remains functional and efficient on edge devices
without dedicated GPUs. By evaluating under CPU-only
conditions, we ensure broader hardware compatibility and
provide a conservative estimate of real-world latency per-
formance. Moreover, the decoder-side modules, including
neural reconstruction and downstream task models, are
offloaded to the server and executed using GPU acceleration
for real-time performance.

5.2.1 Baseline Systems of Audio Compression

We compare our system with seven other benchmark
systems of audio compression, including three edge-to-
server compression architectures, two traditional audio
stream compression schemes, and two emerging compres-
sion methods based on complex neural networks.

• DeepCOD [88]: DeepCOD employs a lightweight con-
volutional block for fast feature downsampling on edge
devices, followed by quantization and encoding. A self-
attention-based reconstruction network on the server
restores features with high accuracy. This design bal-
ances edge efficiency with server computation, making
it ideal for resource-constrained devices and optimized
for tasks like speech recognition.

• Intp: The interpolation algorithm performs downsam-
pling on the Mel-spectrogram features at the edge,



IEEE TRANSACTIONS ON MOBILE COMPUTING 12

and on the server side, bilinear or bicubic interpola-
tion is applied. Subsequently, the downsampled Mel-
spectrogram features are quantized and encoded.

• CS: This method leverages compressed sensing for the
compression and reconstruction of Mel-spectrogram
features. We use ISTA-Net++ [89] to learn observation
matrices for different compression rates, as well as a
reconstruction network based on the ISTA algorithm.

• MP3: As a traditional audio compression method, MP3
uses psychoacoustic models to remove audio informa-
tion that is inaudible to the human ear, such as quiet
sounds or masked frequencies. It then applies tech-
niques like framing, Discrete Cosine Transform (DCT),
and quantization to compress the audio data while
maintaining perceptual audio quality.

• AAC: AAC improves on MP3 through advanced psy-
choacoustic modeling, wider frequency support, and
techniques like temporal noise shaping and prediction.
These enhancements enable better audio quality and
higher compression efficiency at lower bitrates.

• EnCodec [9]: EnCodec employs a streaming encoder-
decoder framework with a multiscale spectrogram ad-
versary to reduce artifacts and enhance audio quality.
It uses a Transformer-based model to further compress
the quantized latent space end-to-end, achieving much
lower bitrates than traditional codecs like MP3 and
AAC.

• DAC [8]: DAC compresses audio at 8 kbps by integrat-
ing high-fidelity audio generation with image-domain
vector quantization and improved adversarial and re-
construction losses. Its universal architecture supports
diverse audio types—speech, environmental sounds,
and music—making it a versatile solution for general-
purpose audio compression and generation.

5.3 Micro Benchmark
5.3.1 Micro benchmark of audio enhancement
We first evaluate the performance of our audio enhance-
ment module using six mainstream objective audio quality
assessment metrics, including PESQ, CSIG, CBAK, COVL,
SSNR and STOI as previously described. Here, CSIG, CBAK,
and COVL are objective metrics that predict subjective
perceptual quality based on trained perceptual models,
while PESQ, SSNR, and STOI directly measure perceptual
quality, signal-to-noise ratio, and intelligibility, respectively.
The evaluation is conducted on the VoiceBank + DEMAND
dataset, where noisy signals are generated by adding noise
recordings from the DEMAND dataset to clean speech
from the VoiceBank corpus at varying signal-to-noise ratios
(SNRs). For all the metrics, the evaluation is performed be-
tween the denoised audio and the clean ground-truth signal
and higher values indicate better performance. To compre-
hensively assess the effectiveness of our AUCOMSENET,
we compare it against 14 state-of-the-art audio enhance-
ment approaches, such as SEGAN [45], MossFormer [56],
TridentSE [92], and MP-SENet [63].

The results in Tab. 1 clearly demonstrate that our pro-
posed method, AUCOMSENET, outperforms all existing au-
dio enhancement approaches across key evaluation metrics.
Specifically, our model achieves the highest scores in PESQ

(a) WER on the LibriSpeech. (b) WER on the LJSpeech.

(c) Accuracy on the IEMOCAP. (d) Accuracy on the VCEMO.

(e) Accuracy on the Speech Com-
mands.

(f) Accuracy on the ESC-50.

Fig. 11: Analysis of AUCOM test performance metrics across
varying bit rates for multiple datasets.
(3.54), CSIG (4.75), CBAK (3.99), and COVL (4.27), indicating
superior performance in perceptual speech quality, signal
clarity, background noise suppression, and overall audio
quality. Additionally, our method maintains a highly com-
petitive SSNR (10.83) and STOI (0.96), matching or exceed-
ing the performance of other state-of-the-art models. These
results highlight the robustness of our model in enhancing
speech quality under various noisy conditions.

5.3.2 Micro benchmark of audio applications
As shown in Fig. 11, to assess the performance of various
AUCOMNET, as well as provide a reference for the AU-
COM system to select models for different target bit rates,
a series of micro benchmark experiments were conducted
across various datasets. For each model version (v1, v2,
v3), we evaluate the bit rate using Huffman coding at
τ ∈ [1, 2, 3, 5, 8, 10], alongside the corresponding metrics for
the downstream tasks.

Speech Recognition: The evaluation focused on the
specific metrics mentioned earlier: WER and accuracy, mea-
sured at different bit rates. Given that the WER of Whis-
per on uncompressed or lossless data (the bit rates are
greater than 256 kbps) of LibriSpeech and LJSpeech is
3.58% and 3.04%, respectively, the results in Fig. 11(a) and
Fig. 11(b) demonstrate that AUCOM achieves comparable
performance at significantly lower bit rates (around 1.5
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Method Year Input PESQ↑ CSIG↑ CBAK↑ COVL↑ SSNR↑ STOI↑

Noisy - - 1.97 3.35 2.44 2.63 1.68 0.91

SEGAN [45] 2017 Waveform 2.16 3.48 2.94 2.80 7.73 0.92
DEMUCS [47] 2021 Waveform 3.07 4.31 3.40 3.63 - 0.95
SE-Conformer [48] 2021 Waveform 3.13 4.45 3.55 3.82 - 0.95
MossFormer [56] 2023 Waveform 3.47 4.40 3.50 3.73 9.09 0.96
MossFormer2 [57] 2024 Waveform 3.16 4.14 3.32 3.58 6.86 0.95
MetricGAN [90] 2019 Magnitude 2.86 3.99 3.18 3.42 - -
MetricGAN+ [70] 2021 Magnitude 3.15 4.14 3.16 3.64 - -
DPT-FSNet [91] 2021 Complex 3.33 4.58 3.72 4.00 - 0.96
FRCRN [55] 2022 Complex 3.23 4.29 3.47 3.83 7.60 0.95
TridentSE [92] 2023 Complex 3.47 4.70 3.81 4.10 - 0.96
DB-AIAT [93] 2021 Magnitude+Complex 3.31 4.61 3.75 3.96 10.79 -
CMGAN [59] 2022 Magnitude+Complex 3.41 4.63 3.94 4.12 11.10 0.96
PHASEN [62] 2020 Magnitude+Phase 2.99 4.21 3.55 3.62 10.18 -
MP-SENet [63] 2023 Magnitude+Phase 3.50 4.73 3.95 4.22 10.64 0.96
AUCOMSENET 2025 Magnitude+Phase 3.54 4.75 3.99 4.27 10.83 0.96

TABLE 1: Performance comparison of different audio enhancement methods.

kbps). Furthermore, AUCOM maintains a perfectly accept-
able WER of less than 5% even at a bit rate of 1 kbps.

Speech Emotion Recognition: UMNOS achieved ac-
curacies of 70.41% and 63.27% on the uncompressed or
lossless test sets of IEMOCAP and VCEMO, respectively. As
shown in Fig. 11(c) and Fig. 11(d), even at a bit rate as low as
1.5 kbps, the AUCOM system achieves near-lossless accuracy
of 67.69% and 60.09%. When the bit rate is reduced to 1
kbps, the system still delivers acceptable accuracy: 62.89%
and 56.72%.

Audio Classification: the AST model achieves accu-
racy rates of 96.55% and 95.52% on the Speech Com-
mand (Fig. 11(e)) and ESC-50 datasets (Fig. 11(f)), respec-
tively, under uncompressed or lossless conditions. On the
Speech Command dataset, AUCOM consistently achieves
near-optimal accuracy at bit rates exceeding 1 kbps. For
the ESC-50 dataset, AUCOM similarly achieved performance
levels approximating those of the uncompressed or lossless
case at bit rates exceeding 1.5 kbps, with accuracy remaining
above 90% even at a bit rate as low as 1 kbps. Furthermore,
the above results indicate that, compared to uncompressed
or lossless compression methods (typically at 256 kbps),
AUCOM can achieve effective compression of the original
data at a bit rate close to 1 kbps, reducing the size to
0.39% of the original, with an acceptable accuracy loss of
approximately 5%.

Fig. 12 illustrates the decompressed fbank spectrogram
at various bit rates. It is evident that, even at a bit rate
of 0.5 kbps, the decompressed spectrogram maintains its
essential features remarkably well when compared to the
uncompressed spectrogram. The micro benchmark results
highlight the robustness and efficiency of our AUCOM sys-
tem across various bit rates and datasets.

5.3.3 Impact of different entropy coding method

Additionally, we evaluated the performance of various en-
tropy coding methods across different models and datasets,
including Huffman coding [41](τ = 2), Arithmetic cod-
ing [94], Range coding [95], and rANS coding [40]. Specifi-
cally, Arithmetic coding, Range coding, and rANS coding
are applied to encode the same latent feature r̃, while
Huffman coding is applied to encode r̃/τ . The results in
Tab. 2 indicate that, given the similar encoding efficiencies
of all methods to the information entropy, the choice of

encoding scheme does not significantly impact the system’s
compression rate or accuracy. Moreover, in the context of
Mel-spectrogram encoding, a substantial amount of known
features is available, enabling an approximate estimation of
the feature’s probability distribution. Given the relatively
low computational overhead of Huffman coding and its
efficiency (i.e., fast encoding/decoding speed) in compress-
ing data with a fixed or near-fixed probability distribution,
Huffman coding is particularly well-suited for the deploy-
ment of the AUCOM system on mobile edge devices.

5.4 Compared with other compression systems

We evaluate the trade-off between compression distortion
and bit rate for AUCOM and various other compression
baseline systems through an automated speech recognition
task. Specifically, we tested the performance of different
compression systems at various bit rates on the LibriSpeech
dataset, with the results shown in Fig. 13.

Traditional algorithms such as MP3 and AAC exhibit
a marked increase in WER as the bit rate is reduced, un-
derscoring the significant degradation in speech recognition
performance at very low bit rates. This decline suggests that
these conventional methods are less effective in preserving
speech intelligibility under constrained bit rate conditions.
Although MP3 and AAC are built upon psychoacoustic
models designed for perceptual fidelity, their optimization
targets are not aligned with downstream tasks such as
ASR. While certain parameters (e.g., quantization level,
masking strength) can be tuned, their internal pipelines
are based on fixed heuristics and are not differentiable or
adaptable to task-specific objectives. In contrast, AuCom
enables end-to-end training directly guided by downstream
performance, offering better adaptability under extreme
bitrate constraints. The edge-to-server offloading systems
DeepCOD [88], CS, and Intp achieve lower compression bit
rates compared to traditional algorithms while maintaining
a low WER. This advantage is particularly pronounced
in the neural network-based CS and DeepCOD systems.
Among them, the ISTANet-based [89] CS method achieves
a WER of less than 5% even at a bit rate close to 5 kbps.
However, as the bit rate is further reduced (i.e., below 5
kbps), the error in these methods increases significantly. In
contrast, the deep learning-based audio stream compression
methods DAC [8] and EnCodec [9] demonstrate improved
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(a) Uncompressed (b) ∼ 3kbps (c) ∼ 2kbps (d) ∼ 1kbps (e) ∼ 0.5kbps

Fig. 12: Comparison of decompressed fbank spectrogram at various bit rates and in the uncompressed state.
Model AuComNet-v1 AuComNet-v2 AuComNet-v3
Dataset LibriSpeech LJSpeech LibriSpeech LJSpeech LibriSpeech LJSpeech
Metrics Bit Rate ↓ WER ↓ Bit Rate ↓ WER ↓ Bit Rate ↓ WER ↓ Bit Rate ↓ WER ↓ Bit Rate ↓ WER ↓ Bit Rate ↓ WER ↓

Huffman 2.30 kbps 3.64% 2.41 kbps 3.20% 1.47 kbps 4.16% 1.55 kbps 3.98% 0.93 kbps 6.39% 0.93 kbps 6.66%
Arithmetic 3.42 kbps 3.58% 2.74 kbps 3.27% 2.01 kbps 4.06% 1.54 kbps 3.89% 1.32 kbps 6.23% 1.05 kbps 6.60%

Range 3.23 kbps 3.58% 2.53 kbps 3.27% 1.84 kbps 4.06% 1.53 kbps 3.89% 1.19 kbps 6.23% 0.98 kbps 6.60%
rANs 3.16 kbps 3.58% 2.19 kbps 3.27% 1.97 kbps 4.06% 1.41 kbps 3.89% 1.22 kbps 6.23% 0.93 kbps 6.60%

Dataset IEMOCAP VCEMO IEMOCAP VCEMO IEMOCAP VCEMO
Metrics Bit Rate↓ Acc ↑ Bit Rate↓ Acc ↑ Bit Rate↓ Acc ↓ Bit Rate↓ Acc ↑ Bit Rate↓ Acc ↑ Bit Rate↓ Acc ↑

Huffman 2.42 kbps 67.45% 2.45 kbps 62.18% 1.48 kbps 67.69% 1.58 kbps 60.09% 1.07 kbps 60.03% 0.91 kbps 53.28%
Arithmetic 2.92 kbps 70.19% 3.27 kbps 63.21% 1.97 kbps 68.52% 2.11 kbps 62.04% 1.49 kbps 59.14% 1.17 kbps 55.83%

Range 2.85 kbps 70.19% 3.08 kbps 63.21% 2.01 kbps 68.52% 1.99 kbps 62.04% 1.43 kbps 59.14% 1.05 kbps 55.83%
rANs 2.83 kbps 70.19% 3.19 kbps 63.21% 1.93 kbps 68.52% 2.04 kbps 62.04% 1.38 kbps 59.14% 1.06 kbps 55.83%

Dataset Speech Commands ESC-50 Speech Commands ESC-50 Speech Commands ESC-50
Metrics Bit Rate↓ Acc ↑ Bit Rate↓ Acc ↑ Bit Rate↓ Acc ↓ Bit Rate↓ Acc ↑ Bit Rate↓ Acc ↑ Bit Rate↓ Acc ↑

Huffman 1.87 kbps 95.50% 1.77 kbps 94.68% 1.03 kbps 95.81% 1.01 kbps 91.92% 0.57 kbps 93.42% 0.93 kbps 90.69%
Arithmetic 1.73 kbps 96.11% 2.16 kbps 95.10% 1.44 kbps 95.59% 1.97 kbps 94.96% 0.92 kbps 93.71% 1.73 kbps 93.92%

Range 1.61 kbps 96.11% 1.87 kbps 95.10% 1.31 kbps 95.59% 1.84 kbps 94.96% 0.83 kbps 93.71% 1.39 kbps 93.92%
rANs 1.59 kbps 96.11% 1.98 kbps 95.10% 1.04 kbps 95.59% 1.67 kbps 94.96% 0.69 kbps 93.71% 1.48 kbps 93.92%

TABLE 2: Impact of different entropy coding method

Fig. 13: Comparative analysis of WER across different com-
pression systems on the LibriSpeech dataset.

Method Parameter Number FLOPs
DeepCOD 5.1e-2k 21.96M

CS 1.60M 36.52M
Intp 0M 20.64M

Encodec 7.43M 48.47G
DAC 19.36M 661.38G

AuCom (Ours) 65.00k 2.56G

TABLE 3: Computational complexity comparison of AuCom
and representative baselines in terms of model size and
FLOPs for 1-minute audio compression.

adaptability to bitrate reduction. However, as the bitrate
approaches 2 kbps, their error rates still increase signifi-
cantly. Moreover, compared to the edge-to-server offload-
ing systems and traditional methods, these audio stream
compression methods rely heavily on the computational
power of servers, making them challenging to deploy at the
edge. As a novel edge-to-server offloading system, AUCOM
demonstrates outstanding performance across all tested bit
rates, particularly excelling at extremely low bit rates. For
instance, it achieves a WER of 4.95% at a bitrate of 0.97
kbps, a performance that surpasses all other systems. This
demonstrates that, even under stringent bitrate constraints,
AUCOM can effectively compress audio data to reduce
transmission and storage overhead, while maintaining high

speech recognition accuracy.
In addition to recognition performance, we further eval-

uate the computational efficiency of AUCOM compared with
several representative baselines. Specifically, we compare
the number of parameters and the total floating-point op-
erations (FLOPs) required to compress 1-minute audio at
16 kHz using the encoder module of each method. The
results are summarized in Tab. 3. For traditional codecs
such as MP3 and AAC, it is difficult to report FLOPs due
to their handcrafted signal processing pipelines and non-
neural architecture. Therefore, we focus our comparison on
other compression frameworks, including DeepCOD, CS,
Intp, Encodec, and DAC.

As shown in Tab. 3, AuCom achieves a total of 2.56
GFLOPs for compressing 1-minute audio, which is signifi-
cantly lower than Encodec (48.47 GFLOPs) and DAC (661.38
GFLOPs). With only 65K parameters, AuCom maintains a
minimal model footprint, further validating its suitability
for deployment on resource-constrained edge devices. The
FLOPs of AUCOM are one to two orders of magnitude
lower than other neural audio compression methods. This
highlights the practicality of AuCom for real-time, low-
power applications in bandwidth-limited mobile scenarios.

5.5 Performance on Mobile Deployment

5.5.1 Micro benchmark tests on the test smartphones

We deploy the signal processing and compression mod-
ules of the AUCOM system on edge devices, specifically
mobile smartphones (i.e., 1: Xiaomi 11 Pro, 2: vivo X80,
3: Huawei nova 12, 4: Google Pixel 6 pro, and 5: Honor
X40 GT). We first provide the detailed specifications of the
mobile devices used in our evaluation, including the chipset
model, memory size (RAM), and Android OS version. These
details are listed in Tab. 4 to ensure the reproducibility
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and clarity of our experimental setup. We then evaluate
the performance of the smartphones using the ANTUTU
benchmark suite [96], which covers five primary indicators:
CPU, GPU, MEM, UX, and AI. The results are shown in
Tab. 4. Specifically, CPU, GPU, and MEM denote the mo-
bile phone’s CPU performance, 3D performance, and RAM
performance, respectively, while the UX indicator integrates
data security, data processing, image processing, and I/O
performance. Meanwhile, the AI benchmark test evaluates
the performance of a device’s artificial intelligence capabili-
ties, including tasks like image processing, natural language
understanding, and real-time AI applications. It provides a
comprehensive score reflecting the efficiency and power of
AI operations on the device.

5.5.2 Evaluation of system deployment on mobile devices.

Fig. 14: Average encoding latency (ms) across different
smartphones and compression methods.

Fig. 15: Memory usage (MB) during 1-minute audio com-
pression on different devices.

Fig. 16: Comparison of energy consumption per 1-minute
audio compression across different smartphone devices.

To reduce unnecessary computation in quiet environ-
ments, the speech enhancement module in AUCOM is
conditionally activated. Specifically, before each recording
session, the system performs a lightweight pre-recording
energy check to estimate ambient noise levels. If the back-
ground noise exceeds a predefined threshold, the enhance-
ment module is enabled; otherwise, it remains inactive. This

adaptive strategy ensures robustness to dynamic acoustic
environments while maintaining low resource usage on
edge devices.

In practice, the system captures a short segment
(0.5–1.0s) of background audio and computes its average
root mean square (RMS) energy. A predefined threshold
of 0.02 (in normalized amplitude) is used to determine
whether the environment is considered noisy. This check
introduces negligible overhead—less than 1 ms latency and
minimal memory usage—making it suitable for real-time
operation on mobile devices.

To evaluate the resource consumption of edge devices
under normal conditions, we conducted tests focusing
solely on the performance of Mel-frequency feature extrac-
tion and data compression. This assessment aims to mea-
sure the computational cost associated with fundamental
audio processing tasks, providing insights into the baseline
resource requirements without the influence of noise reduc-
tion operations. For each 1-minute audio signal recorded
by the edge device’s microphone, signal processing and
compression were conducted, and this process was repeated
for 20 audio signals.

We first validate the real-time performance of the AU-
COM system by deploying its compression and encoding
modules on five representative smartphones. As described
in Sec. 5.2, all models are tested using the default CPU-
based ONNX runtime, without GPU acceleration. For each
device, we record the total time required to compress 20
one-minute audio clips and compute the average latency,
memory usage, and energy consumption.

To further contextualize the efficiency of AUCOM, we
compare its performance with five representative baseline
systems: Encodec [9], DAC [8], DeepCOD [88], CS [89],
and Intp. The results are presented in Fig. 16, Fig. 14, and
Fig. 15. Compared to the neural network-based method
DAC and Encodec, AUCOM demonstrates superior perfor-
mance across all dimensions. Specifically:

• Latency: AUCOM achieves an average encoding latency
of ∼ 0.2s (200ms) per clip, whereas neural codec base-
lines (e.g., DAC, Encodec) exhibit latency in the range
of 2–30 seconds (Fig. 14).

• Memory usage: AUCOM requires less than 400MB of
RAM during runtime on all devices, whereas DAC and
Encodec demand over 1GB and up to 2.5GB, which
may hinder background deployment on resource-
constrained devices (Fig. 15).

• Energy consumption: AUCOM consistently consumes
less than 1.2J per 1-minute audio clip across all devices,
significantly lower than Encodec (∼ 10–20J ) and DAC
(∼ 50–150J ), as shown in Fig. 16.

These results confirm that AUCOM fully satisfies real-
time requirements on mainstream smartphones. For ex-
ample, on the Xiaomi 11 Pro, the system consumes only
0.79J to compress a 1-minute audio file. Given a 5000mAh
battery and a nominal voltage of 3.8V, this implies continu-
ous audio compression can be sustained for approximately
h = 5000mAh×3.8V×3.6

0.79J×60 ≈ 1443 hours without recharging.
This efficiency highlights the suitability of AUCOM for
always-on, daily mobile usage.
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Smartphones CPU↑ GPU↑ MEM↑ UX↑ AI↑ Chipset Model Memory Size (RAM) Android OS version
Xiaomi 11 Pro 210273 238996 170166 193928 496976 Qualcomm Snapdragon 888 8GB 14

vivo X80 368452 361166 222312 259556 111173 MediaTek Dimensity 9000 8GB 12
Huawei nova 12 183981 139625 133765 136185 86747 Qualcomm Snapdragon 778G 8GB 12 (Harmony OS 4.2.0)

Google Pixel 6 pro 183604 174109 148578 169700 340971 Google Tensor 12GB 14
Honor X40 GT 192461 216011 144437 184854 509907 Qualcomm Snapdragon 888 12 GB 14

TABLE 4: Comparison of computation micro benchmark tests and detailed device information on test smartphones. Huawei
nova 12 is equipped with HarmonyOS 4.2.0, a customized operating system that remains compatible with Android 12.

Fig. 17: Comparative analysis of transmission latency of
different compression systems.
5.5.3 The impact of varying bandwidths and transmission
protocols on system performance.

Furthermore, we evaluate the system latency under varying
upload bandwidths. We test the Xiaomi 11 Pro with upload
bandwidths ranging from 1 to 20 Mbps, using AUCOM,
MP3, AAC, DeepCoD, CS, Intp, Encodec and DAC to pro-
cess and transmit 20 sets of 1-minute audio, measuring the
average latency for each case.

The results in Fig. 17 demonstrate that under limited
upload bandwidth conditions—such as network congestion
due to multiple concurrent devices or weak network signals
caused by distance from the coverage center—AUCOM’s la-
tency is significantly lower than that of direct MP3 transmis-
sion and all other benchmark methods. Specifically, when
the available bandwidth per device is limited to 1Mbps,
the system latency is reduced by 93.10% compared to MP3.
Additionally, AUCOM is suitable for transmission protocols
in bandwidth-constrained IoT devices, such as ZigBee (with
a bandwidth of 20-250Kbps) and long-range LoRa (with a
bandwidth of approximately 10Kbps). AUCOM utilizes only
1Kbps of bandwidth to achieve general audio compression,
making it capable of meeting real-time transmission de-
mands under various bandwidth limitations.

6 LIMITATION & FUTURE WORK
Real-Time Processing Constraints. Although AUCOM en-
ables low-latency audio compression, real-time denoising
and Mel-spectrogram processing still pose challenges for
low-power edge devices. Future work will explore model
compression techniques—such as pruning, quantization,
and distillation—as well as efficient architectures (e.g.,
depth-wise convolutions, lightweight Transformers) to re-
duce latency and energy consumption while maintaining
performance.

Privacy and Security Considerations. While AUCOM
reduces raw audio exposure through Mel-spectrogram com-
pression, residual speech patterns may still pose privacy
risks. Future work will explore privacy-preserving tech-
niques—such as homomorphic encryption, secure multi-
party computation, and differential privacy—to ensure se-
cure edge-to-server transmission without sacrificing effi-
ciency.

Expanding Dataset Diversity. While our evaluation
on VoiceBank+DEMAND aligns with common practice, its
limited speaker diversity may constrain generalization. In
future work, we will explore larger and more varied datasets
with broader speaker, accent, and noise coverage to better
assess AUCOM’s robustness in real-world conditions.

Exploring Alternative Efficient Attention Mechanisms.
We adopt Performer for linear-time efficiency, while not-
ing alternatives (Longformer [97], Squeezeformer [98]) of-
fer different accuracy/efficiency trade-offs. Future work
will benchmark these within our framework to guide
lightweight attention for edge deployment.

Extending to hierarchical edge-to-server architectures.
Our framework is modular and compatible with both
two-layer (edge device–cloud) and three-layer (edge de-
vice–edge server–cloud) deployments. In a two-layer archi-
tecture, offloading decisions are relatively straightforward
but highly sensitive to end-to-end bandwidth and latency
fluctuations, since the device communicates directly with
the cloud. In contrast, a three-layer architecture introduces
an intermediate edge server, which provides additional
flexibility for task placement (e.g., preprocessing or partial
inference at the edge), but also increases the complexity
of scheduling and coordination. Offloading decisions (e.g.,
decoder/inference placement) are inherently dynamic and
must adapt to real-time network conditions, device capabil-
ities, and server load. Since researches [10], [11] analyze the
relative difficulty and trade-offs of offloading in two- versus
three-layer pipelines. We plan to integrate and empirically
evaluate these mechanisms in future work.

Lightweight adaptivity of noise gating. Beyond the
fixed frame-energy threshold (0.02), we plan to add a
lightweight adaptive gate that updates the threshold online
from recent signal statistics with negligible compute or
power cost. This thin wrapper only controls the enhance-
ment branch, using short-memory stats with basic hysteresis
to stabilize across quiet or noisy scenes. It improves robust-
ness without altering the architecture or energy and latency
budgets.

7 CONCLUSION
In this paper, we propose an efficient cloud-edge audio
streaming architecture based on Mel spectrum. The system
deploys Mel feature extraction and quantization models
on the edge, effectively breaking through the bottleneck
of traditional audio compression and achieving extreme
compression ratio and low latency performance. The system
builds decompression modules to support high-precision
processing of tasks such as speech recognition, speech
emotion recognition, and audio classification in the cloud.
This architecture provides strong technical support for real-
time audio stream processing and shows wide application
potential.
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