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Abstract

Hand-tracking technology is a pivotal input method in augmented
and virtual reality environments, providing enhanced interaction
accuracy through micro-gesture recognition. This allows users to
control devices with minimal knuckle movements, ensuring privacy
and accessibility for individuals with mobility impairments. Build-
ing on the foundation of human capacitance, this paper introduces
a novel approach termed human capacitance-based micro gesture
(HCMG) recognition. This system employs capacitive sensors inte-
grated within the inner lining of a wrist guard, capable of detecting
subtle changes in skin-to-electrode contact caused by finger joint
movements. Our approach leverages the inherent properties of hu-
man capacitance to facilitate accurate and efficient micro-gesture
recognition. HCMG achieves recognition of five common micro
gestures with an accuracy of 95.0%, providing a promising solution
to address the limitations of existing techniques.
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1 Introduction

Motivation: Hand-tracking technology provides a convenient in-
put mode for augmented and virtual reality [19]. On this basis,
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Figure 1: Micro gesture for VR/AR system.

micro-gesture recognition further enhances the perception accu-
racy of the interaction system, allowing users to interact with the
device with only a slight movement of their knuckles [12]. This
protects the user’s privacy during the interaction process and pro-
vides a convenient interaction solution for people with mobility
impairments [16].

Vision-based systems rely on cameras for unobstructed and close-
up shots of the hand, and most are deployed on heads-up display
devices [1, 2, 12]. However, headset devices lack comfort, and image
processing requires high hardware performance. To sense the weak
movement of fingers to identify gestures or sign language, iner-
tial sensor-based solutions need to wear rings on multiple fingers,
which is inconvenient [24, 25]. In addition, wireless signals such as
WiFi make capturing micro-gestures in space over long distances
difficult, and millimeter wave sensors in devices such as bracelets
are expensive and difficult to popularise [21].

Inspired by research based on human capacitance, recent re-
searches [7, 8, 13, 14, 22] verified that capacitive sensors can sense
weak differences in touch strength, orientation, and other factors.
In this paper, we propose a human capacitance-based micro gesture,
HCMG. the system deploys the sensing electrodes of the capaci-
tance sensors on the inner side of the wrist guard to measure the
human capacitance, and the movement of the finger joints causes a
slight change of the skin-to-electrode contact at the wrist, which
enables the perception of the micro gesture.
Challenges: When there is even a slight change in the contact
between the hand’s skin and the electrode, the human body capaci-
tance signal measured by the sensor will also vary. By processing
this capacitance signal, the corresponding micro gestures can be
identified. However, due to environmental electric field interfer-
ence, the capacitance signal is susceptible to high-frequency noise.
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Additionally, a specific recognition model is needed to accurately
map the capacitance signals generated by different micro gestures
to their respective micro-actions.

Our approach: We develop a prototype of HCMG by strategi-
cally placing 4 ultra-miniature electrodes on the inner side of the
wrist guard. The electrode and capacitance sensors are connected
to collect human capacitance signals, with a Gaussian filter em-
ployed to mitigate high-frequency noise. Subsequently, a neural
network-based recognition model maps the processed capacitance
signals to their corresponding micro gesture labels, thereby accu-
rately obtaining the user’s micro gesture information. To validate
the effectiveness of the proposed HCMG, we conduct evaluation
experiments. The experimental results confirm the high efficacy of
HCMG in facilitating user micro gestures. Specifically, the system
achieves a high recognition accuracy of 95.0%. The contributions
of this research are detailed below:

• We propose a novel interaction system, called HCMG, demon-
strating the practicality of distinguishing micro gestures by em-
ploying a model of human capacitance. Our system’s robustness
permits accurate micro gesture recognition, paving the way for
innovative wearable technologies.

• For micro gesture recognition, we employ Bi-bidirectional LSTM
network architectures to analyze the human capacitance signals.

• We implement the prototype of HCMG and conduct extensive
experiments in real-world environments to assess its recognition
capability. The results indicate that HCMG is an innovative in-
teraction system, and can be deployed on wearable devices to
recognize the micro gestures.

2 Related Work

2.1 Micro Gesture

Micro gestures have proven useful for interaction with ubiquitous
computing systems. BikeGesture [20] designed customized gloves
that recognize different gestures during the user’s ride based on ac-
celerometer signals. Pucihar [21] recognized Thumb, Scratch, Tickle,
and Swipe gestures using radar sensors deployed on the wrist for
augmenting arbitrary physical objects. Grasping Microgesture [19]
analyzed 6 common grasping styles and 12 handheld objects to
investigate the influence of handles and objects on the gestures
conceived by the user. STMG [12] utilized the skeletal tracking
technology on the headset to extract the slightest movement of a
finger, underpinning thumb-based micro-gesture interactions.

2.2 Human Capacitance based Interaction

Capacitive touchscreens are commonly configured in mobile de-
vices such as smartphones andwatches, and researches have demon-
strated the ability of capacitive sensors to enable rich interactions.
Recognizing different fingers based on human capacitance [7, 8, 13]
provides a new dimension for human-computer interaction sys-
tems for mobile devices. Different parts of the finger (e.g., finger
belly, fingernail) have different electrical properties [10, 15], which
capacitive sensors can capture and recognize. Touchscreen-based
finger angle estimation provides a slight movement in 3D space
[14, 22]. In addition, human capacitance can be used as a carrier of
electrical signals [4] to tap into user biometrics [5, 23].

3 System Framework

3.1 Human Capacitance

HCI systems based on human capacitance recognize interaction
contents utilizing different signal patterns of human capacitance.
The system measures the human capacitance at the wrist. Human
capacitance can be divided into the intrinsic part and the extrinsic
part. The intrinsic part is the body tissue; the extrinsic part consists
of the body or electrodes and the external ground plane [17]. The
intrinsic part is usually considered to be static and related to the
electrical properties of the body, and the equivalent capacitance
of the body part tissue is only related to the size of the part being
measured. The capacitance of the tissue 𝐶𝑡𝑖𝑠𝑠𝑢𝑒 can be written as:

𝐶𝑡𝑖𝑠𝑠𝑢𝑒 = 𝜀𝐴/𝐿 (1)

𝑅𝑡𝑖𝑠𝑠𝑢𝑒 = 𝐿/𝜎𝐴 (2)

where 𝐴 represents cross-sectional area of the tissue, 𝐿 repre-
sents the length, 𝜀 and 𝜎 represents the relative permittivity and
conductivity. The external part depends mainly on the external en-
vironment, such as objects in the return path (i.e., air), the contact
between the electrodes and the skin, etc.

Therefore, human capacitance is usually stable with constant
skin-to-electrode contact. While electrical appliances in the en-
vironment generate high-frequency electromagnetic interference
based on the human body antenna effect captured by the system,
the system is suppressed by Gaussian filter [23]. However, the
muscle movements generated by the micro gestures can drive the
skin at the wrist to move slightly, thus affecting the contact with
the electrodes as shown in Fig. 3. As shown in Fig. 6, the HCMG
system integrates four electrodes connected to capacitive sensors
within the interior of the wrist guard to measure the corresponding
changes in capacitive signals. These signals are then utilized to
accurately recognize user micro gestures.

3.2 Signal Acquisition

As shown in Fig. 4, We utilize capacitive sensor unit [11] for the
acquisition of human capacitance signals. Upon contact with the
electrode pads positioned on the interior of the wrist guard, the ca-
pacitive sensor serially connects the human body capacitance with
the integrated capacitor 𝐶1 [18], which is subsequently connected
to the operational amplifier circuit.

We define the capacitance to be measured as 𝐶𝑒 , where:

𝐶𝑒 =
𝐶1𝐶ℎ𝑢𝑚𝑎𝑛

𝐶1 +𝐶ℎ𝑢𝑚𝑎𝑛

(3)

Upon receiving an excitation signal with an amplitude of𝑉𝑒 (typically
an AC signal in the form of a square wave or sinusoidal wave), the
stored charge 𝑄 in the capacitance 𝐶𝑒 also varies accordingly:

𝛿𝑄 = 𝐶𝑒𝑉𝑒 (4)

Subsequently, the capacitance 𝐶𝑒 is determined by analyzing the
output voltage 𝑉𝑜𝑢𝑡 :

𝛿𝑄 = 𝐶𝑓 (𝑉𝑜𝑢𝑡 −𝑉𝑓 ) (5)

where 𝐶𝑓 is the feedback capacitance and 𝑉 𝑓 refers to the non-
inverting input voltage of operational amplifier.
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Figure 2: The interaction system architecture of HCMG.
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Figure 4: Human capacitance measurement with the capaci-

tive sensor.

3.3 Recognition Model

Different micro gestures correspond to distinct sequences of capac-
itive signals, which are then identified by a neural network-based
recognition model utilizing these capacitive signals. As shown in
Fig. 5, the network tasks a 4-channel human capacitance signal se-
quence of length 𝐿𝑠 as input, and outputs an 𝐿-dimensional vector
𝑙𝑖 corresponding to the 𝐿 possible labels.

We detail each network module of our architecture as follows.

Feature Extractor. For the input sequence 𝑠𝑖 , we first use a bidi-
rectional long short-term memory (LSTM) [9] to find and exploit
long-range dependencies in the data. The number of features in the
hidden state is 128, and the number of layers is 2. Next, after the
𝐵𝑎𝑡𝑐ℎ𝑁𝑜𝑟𝑚 layers, we can obtain the features 𝑓𝑖 extracted from the
sequence 𝑠𝑖 .
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Figure 5: Architecture of our recognition neural network.

Classifier. The classifier is a network consisting of a 𝑅𝐸𝐿𝑈 block
and a fully connected layer. After the 𝑅𝐸𝐿𝑈 block, the fully con-
nected layer with modules of the form 𝐿𝑖𝑛𝑒𝑎𝑟 − 𝑅𝑒𝐿𝑈 outputs the
possibility 𝑙𝑖 that the sequence belongs to each label. Specifically,
the layer is a Multilayer Perceptron with one hidden layer with
1024 units and an output layer with the same number of units as
labels.

Optimization. We define the label prediction loss L𝑐 (𝑙𝑖 , 𝑙𝑖 ) by
the 𝐶𝑟𝑜𝑠𝑠𝐸𝑛𝑡𝑟𝑜𝑝𝑦 loss and train our model with L𝑐 .

4 Evaluation

As shown in Fig. 6, the HCMG system consists of a capacitance
sensor (TI FDC2214 [6] with the excitation frequency of 10𝑀𝐻𝑧)
and an STM32 microcontroller (sampling rate of 30𝐻𝑧), where the
capacitance sensor is used to measure the human capacitance in
real-time. The capacitive sensor is the mutual capacitance sensor
and the sensor operates in shunt mode (passive sensing). The cir-
cuit’s operational parameters, with a voltage range of 2.7V to 3.1V
and a current of 2.1mA, lie well below the established safety thresh-
olds of 10V for continuous contact and 20mA for human body
communication [3], affirming the exceptional safety of the HCMG
system. The software part is the sampling of the sensor output
using the STM32, the processing, and the recognition of the sensor
data on the PC side (Lenovo LEGION Y7000).
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Figure 6: Experimental setup of HCMG.

The system acquires the human capacitance signal from the
electrode pads on the inner lining of a wrist guard. The user makes
different micro-gestures through finger movements.

Dataset. We recruited five volunteers to participate in the dataset
creation process by wearing the system. Each participant performed
five distinct micro gestures as shown in Fig. 7 (grab with all five
fingers, rattle with the thumb, snap with the thumb, pinch with
the thumb and forefinger, and click with the forefinger), repeating
each micro gesture 50 times, with each repetition completed within
a duration of 3 seconds. For each micro gesture, 40 repetitions
were allocated to the training set,𝑚 (𝑚 ranging from 2 to 7) to the
cross-validation set, and 10 −𝑚 to the test set.

Training details. The model was trained on one NVIDIA TESLA
V100 for 50 epochs with a batch size of 16. The sequence length
of each channel was limited to 90, i.e. approximately 3𝑠 of data
sampled at a sampling rate of 30𝐻𝑍 . The optimizer used is Adam
with a learning rate of 1𝑒 − 3, 𝛽1 = 0.9 and 𝛽2 = 0.999, a weight
decay of 0. A learning rate schedular is used to decay the learning
rate of each parameter group by 𝛾 = 0.2 every 10 epoch.

Micro Benchmarks. We evaluated the recognition accuracy of
HCMG for the 5 micro gestures in Fig 7. The results, illustrated in
Fig. 8, show that the accuracy for the five micro gestures (grab with
all five fingers, rattle with the thumb, snap with the thumb, pinch
with the thumb and forefinger, and click with the forefinger) was
100%, 100%, 92%, 94%, and 100%, respectively. This demonstrates
the excellent performance of our system in accurately recognizing
and distinguishing between different micro gestures.

5 Applications

The development and application of HCMG, a human capacitance-
based system for micro gesture, offer significant potential across
various AR/VR applications.

Interactive Learning and Training: Micro-gestures can be used
in educational and training applications within AR/VR environ-
ments to provide a more engaging and hands-on learning experi-
ence. For instance, medical students can perform delicate surgical
simulations using precise hand gestures, offering a safe and inter-
active method for practicing procedures that require fine motor
skills.

Figure 7: Micro hand gestures of HCMG.
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Figure 8: Accuracy of micro gesture recognition.

Gaming and Entertainment: In gaming, micro-gesture integra-
tion in AR/VR can lead to more immersive and interactive experi-
ences. Players could use nuanced hand gestures to perform specific
actions like casting spells, crafting items, or controlling game char-
acters, adding a layer of depth and realism that enhances the overall
gameplay.
Accessible User Interfaces:Micro-gestures can make AR/VR tech-
nologies more accessible by enabling users with limited mobility to
perform gestures that are less physically demanding. This approach
can broaden the usability of virtual environments, allowing a wider
range of users to engage with digital content without the need for
extensive physical movements.

6 Conclusion & Future Work

This paper has presented a human capacitance-based micro gesture
(HCMG) system that leverages capacitive sensor technology to
detect micro-gestures through changes in skin-to-electrode contact
accurately. This system addresses several challenges associatedwith
existing hand-tracking technologies, including the obtrusiveness
of headset-based vision systems and the impracticality of inertial
sensor configurations requiring multiple wearables.

Future research will focus on optimizing the sensitivity and reli-
ability of the capacitive sensors to ensure consistent performance
across diverse environmental conditions and user demographics.
Additionally, integrating machine learning algorithms could en-
hance the system’s ability to adapt to individual user gestures,
thereby personalizing the interaction experience. Moreover, ex-
tending the technology to recognize a broader array of gestures
and incorporating feedback mechanisms could further enrich user
interactions. The ultimate goal is to pave the way for the seamless
integration of micro-gesture recognition into mainstream wearable
technology, opening new avenues for user-device interaction.
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