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Fig. 1: (a) In mobile payment scenarios, the cashier is the target receiver and the surrounding attackers are the illegal receivers.
(b) The traditional QR code image can be obtained by both the cashier and the attackers, while the Moiré QR code is highly
secure and cannot be spied out by attackers. (c) A deep learning based method is proposed to achieve fast decryption of Moiré
QR codes. Due to the fact that the Moiré pattern is highly sensitive to the relative pose of screen and camera as well as their
hardware variability, a physical screen-imaging Moiré simulator is developed to augment the training data

Abstract—Moiré QR Code is a secure encrypted QR code
system that can protect the user’s QR code displayed on the
screen from being accessed by attackers. However, conventional
decryption methods based on image processing techniques suffer
from intensive computation and significant decryption latency
in practical mobile applications. In this work, we propose a
deep learning-based Moiré QR code decryption framework and
achieve an excellent decryption performance. Considering the
sensitivity of the Moiré phenomenon, collecting training data
in the real world is extremely labor and material intensive.
To overcome this issue, we develop a physical screen-imaging
Moiré simulation methodology to generate a synthetic dataset
that covers the entire Moiré-visible area. Extensive experiments
show that the proposed decryption network can achieve a low
decryption latency (0.02 seconds) and a high decryption rate
(98.8%), compared with the previous decryption method with
decryption latency (5.4 seconds) and decryption rate (98.6%).

Index Terms—Secure QR code, Moiré pattern, Image-to-image
translation, Simulated data

I. INTRODUCTION

Quick Response (QR) code has become a widely used
method in near-field communication due to its fast readability
and the popularization of smartphones with built-in cameras.
Unfortunately, traditional QR code systems are vulnerable
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to security risks in the form of Replay attacks [1]–[3] and
Synchronized Token Lifting and Spending (STLS) attacks [4].
In these attack scenarios, attackers surreptitiously intercept
images of victims’ QR codes, which can lead to serious private
information leakage, and financial losses [5], [6], etc. Some
special physical materials are currently deployed to protect
the contents (i.e., QR code image) displayed on the screen
by restricting the visible angle, e.g., privacy filter (also called
anti-peep film) [7]. However, these privacy filters are hardly
useful if the attackers spy on the victim’s smartphone screen
from the same visible area (around 60°) facing the screen.

Several works utilize the Moiré phenomenon that existed in
the interaction between the digital screens and cameras and
proposed Moiré QR code (mQR code) system to improve the
security of the standard QR code [8], [9]. In physics, Moiré is a
visual geometrical design that occurs when one set of straight
lines or curves is superposed simultaneously onto another
set [10]. Pan et al. [8] proposed a phase modulation method
to encrypt a standard QR code image into a camouflaging
pattern (see Fig. 1(b)) with a similar spatial frequency to
the Color Filter Array (CFA) in the camera. Only when the
target receiver’s camera is positioned in the Moiré-visible
area, where the encrypted QR code image can be projected
to the imaging plane with the similar spatial frequency to
the CFA, the information of the original QR code can be



(a) iPhone 7Plus (b) Xiaomi 11Pro
Fig. 2: (a) Examples of encrypted QR code images captured by iPhone 7 Plus in Moiré-visible positions. (b) Examples of
encrypted code images captured with a Xiaomi 11Pro when displayed on different screens

revealed (see the green box in Fig. 1(b)). When the attacker’s
camera captures the image of the encrypted QR code outside
the Moiré-visible area, a meaningless gray image is obtained
(see the red box in Fig. 1(b)), which prevents information in
the QR code image from leaking out.

(a) Color inversion phenomenon (b) Blur phenomenon
Fig. 3: Issues of decryption Moiré code images

To extract the original QR code information correctly, in
addition to capturing the Moiré QR code from the intended
perspective (i.e., in the Moiré-visible area), post-processing is
required to convert the captured Moiré QR code to a standard
QR code. The main reason is that in the scenarios where a
user holds the smartphone camera and decodes the encrypted
QR code, the imperfect match of the projected encrypted QR
code and the CFA results in blurred parts and color inversion
of the QR code blocks when captured by the camera. A
demonstration of color inversion is shown in Fig. 3a. In the
yellow box, black blocks of the original QR code are mapped
to purple ones in the captured picture. However, in the green
box, black blocks are mapped to green ones. Likewise, as
shown in Fig. 3b, the portions boxed by the red lines illustrate
the blur phenomenon. It is difficult to determine whether the
colors in these portions are green or purple. . The decryption
algorithm previously proposed in [8] must go through all
the pixels on the captured image to determine the presence
of blur and color inversion and relies on techniques to fuse
information from multiple frames to identify the original QR
code. This type of decryption method based on traditional
image processing techniques and multiple frames suffers from
a huge computational overhead and significant latency when
deployed on mobile devices, which limits the use of Moiré
QR code system in practice.

In this paper, we propose a deep learning based method for
efficiently decrypting Moiré QR code (as shown in Fig. 1(c)).
By employing the image-to-image translation technique, our
proposed method can decode the embedded message of Moiré
QR code images both faster and more accurately.

Although recent deep learning work has made great progress
in supervised image-to-image translation task, the main con-
cern is to ensure the robustness of the training data. The

diversity and quantity of training data are the main determi-
nants of the effectiveness and robustness of the deep learning
based Moiré QR code decryption network. Unfortunately, it is
almost unrealistic to collect real-world training data covering
the entire Moiré-visible area which requires displaying the
encrypted QR code images on the screens and capturing them
with the cameras. One main reason is that the Moiré pattern
in the captured images is very sensitive to the relative pose
(i.e., distance and rotation) between the screen and the camera
(as shown in Fig. 2a). Therefore, to cover the entire Moiré-
visible area, precise control of the relative pose between screen
and camera is needed, which can vary with fine granularity
(e.g., 0.5mm, 0.1°). To obtain sufficient training data, the
camera needs to be fixed at each pose to capture different QR
code samples displayed on the screen. Therefore, the accuracy
and stability of camera pose control are almost impossible to
achieve by the user holding the smartphone. Another reason
is the diversity of cameras and screens on the market. The
camera modules built into smartphones have different hard-
ware characteristics in terms of CFA filter quality, CMOS light
sensitivity, etc. Likewise, different screens have a different
color space due to the differences in LCD/OLED tubes, and
display modes (e.g., normal/night/low-blue). Therefore, the
differences in camera and screen hardware also influence the
Moiré QR code images (as in Fig. 2b).

To ensure the effectiveness of our deep learning based
decryption model, in this paper, we propose a physical screen-
imaging Moiré simulator to generate the Moiré QR code
images when they are photographed in the entire Moiré-visible
area. To accommodate the diversity of cameras and screens, we
perform a data augmentation scheme on the simulated Moiré
QR code images. The final robust synthetic dataset is used to
train our decryption network.

The main contributions of our work are three-fold:

1) We propose a deep learning based Moiré code decryp-
tion method. It achieves a decryption latency of 0.02
seconds and a decryption rate of 98.8% for the Moiré
QR code system. This reduces the average latency by
5.4 seconds compared with the multi-frame decryption
method in [8].

2) We propose a screen-imaging Moiré simulation method-
ology that approximates the “physical transmission”
(i.e., the real screen and the subsequent image capture),
and synthesize Moiré QR code images to improve the
robustness of the training dataset. We also employ a data



augmentation scheme to cover the entire Moiré-visible
area and physical screen-camera pairs.

3) We conduct extensive experiments to verify the effec-
tiveness of the screen-imaging Moiré simulation. The
results show that the model trained on the synthetic
training dataset can achieve almost the same decryption
performance as the one trained with the real-world
dataset when limiting the types of the devices and
screen-camera relative poses.

II. RELATED WORK

A. Image Encryption

One related type of technique is information hiding, such
as watermarking and stenography methods which inject given
information into a cover media and hide its existence. Some
related works propose the QR code hidden techniques to
inject QR code images into videos or cover images, which
obscures the existence of QR codes [11]–[13]. However, these
techniques just make the QR code images unapparent to the
human eyes, rather than the attackers’ cameras; thus it cannot
be applied to improve the security of the QR code system
and prevent sneaking attacks. Image encryption is a technique
that takes consecutive or random pixel bits of an image and
modifies them collectively under specific rules, thereby leading
to a complete set of new pixels, which differs from the
original bits [14]. The image encryption methods are widely
applied in digital image communication in public networks to
prevent eavesdropping, illegal modification, duplication, etc.
Nevertheless, these techniques are hardly applicable to the QR
code systems. Because after the encrypted image is taken by
the receiver (camera), serious problems such as distortion of
RGB information at pixel level and blurring between pixel
and pixel make it impossible to restore the original image
information. Another problem is that the receiver end needs
the decryption keys to retrieve the original image. However, in
the QR code system, the screen and camera cannot be paired
directly and the decryption keys are hardly transferred to the
camera.

B. Moiré Phenomenon

There are considerable previous research efforts [15]–[17]
dedicated to hiding images through Moiré patterns. Desmedt
et al. [17] use Moiré patterns to secretly share information in
realistic images. Lebanon et al. [15] exploit the superimposed
grating patterns to create Moiré patterns of facial images which
can be appreciated by humans. Tsai et al. [18] provide a novel
pathway of Moiré art and visual decoding by superimposing
grating images printed on separate transparencies. Hersch et
al. [16] extend the understanding of the Moiré phenomenon
and create moving Moiré components that can run up and
down at different speeds and in various orientations when
applying translation to the revealing layer. All the afore-
mentioned approaches require two semi-transparent layers to
overlap each other to reveal the hidden image. Distinguished
from these works, Moiré QR code and [9], [19] exploit the
nonlinear optical interaction between a camera (specifically

the color filter array) and a camouflaging pattern to hide QR
codes.

C. Image-to-image translation
Image-to-image translation techniques focus on learning

a conditional image generation function that maps an input
image from the source domain to a corresponding image
in the target domain [20]. The generative adversarial net-
works (GAN) [21] and supervised learning [22]–[24] are
extensively studied in image-to-image translations. Liang et
al. [25] design a lightweight network for translating the
low-frequency component with reduced resolution; they also
propose a progressive masking strategy to efficiently refine the
high-frequency images. Particularly, U-Net [26] wins the ISBI
bioimage segmentation challenge. It consists of a contracting
path that captures context and a symmetric expanding path
that enables precise localization, which initiates a new route to
complete the image-to-image translation task. This architecture
can contribute to solving the problem of reconstruction from
Moiré patterns to the original QR code.

III. TRAINING WITH MOIRÉ QR SIMULATOR

To overcome the difficulties in collecting real-world data,
we develop a Moiré QR code simulator that approximates
real-word Moiré patterns. Its simulated images are then used
to train the decryption model. The whole pipeline of the
training procedure is shown in Fig. 4. It consists of four main
procedures: (i) Generate the encrypted QR code IE from the
standard QR code IS . (ii) Synthesize the Moiré QR code
IM by simulating the real-world Moiré pattern caused by
physically displaying of the screen and imaging of the camera.
(iii) Augment the color to account for the diversity in hardware
settings of the different camera-screen pairs. (iv) Use a U-Net
to decrypt the augmented Moiré QR code images ÎM into
the original QR code, and enforce the losses to minimize the
difference.

A. QR Code Encryption and Its Secure Characteristics
Given a standard QR code, we apply the encryption algo-

rithm proposed in [8] to convert the original QR code image
into an encrypted one. As shown in the first and second figures
in Fig. 6, the black and white blocks in the standard QR code
are modulated as special patterns, i.e., the alternating black
and white screen pixels with different sequences. Assuming
a pinhole camera model, the encrypted QR code image (IE)
is projected through the lens onto the imaging plane in the
camera, and we define the projected image as I ′E . If the screen
pixel size in I ′E perfectly matches the image sensor pixel size1

of the camera, the Moiré pattern is perfectly presented as the
standard QR code (see Fig. 5b), and we define the perfect-
match position as Ppm. This perfect-match position can also
be formulated as the following equation:

LS

LCFA
=

D

f
(1)

1CFA is a tiny color filter over the image sensor (imaging plane) to capture
color information [27], and each red/green/blue filter unit in the CFA has the
same size as the single image pixel sensor in the imaging plane.



Fig. 4: Pipeline of the training process of deep learning based decryption model

(a) Original QR
code

(b) At the perfect
position Ppm

(c) In the Moiré-visible area. Left to right are
getting further away from Ppm

(d) Out of moiré-
visible area Amv

Fig. 5: (a) Standard QR code image. (b)-(d) Moiré patterns of the encrypted QR code images when captured by the camera
at different positions from the screen

where LS is the length of the physical screen pixel (i.e., the
size of each LCD tube), LCFA is the length of each color
filter unit (the same as the length of the image pixel sensor),
D is the distance between camera and screen that displays the
encrypted QR code, and f is the focal length of the camera.
We define the relative position between the camera and the
screen that perfectly satisfies the Eq. 1 as the Ppm.

In practical scenarios, even if it’s impossible for users to
place the camera at the perfectly matched position, the Moiré
pattern that contains the original QR code information is still
visible (see Fig. 5c) when the camera is near the Ppm (i.e., the
screen pixel size in I ′E appreciates the image sensor pixel size
to be matched). Therefore, we define the relative positions of
the screen and the camera that approximately satisfies the Eq. 1
as the Moiré-visible area (i.e., the legal QR code receiving
area for the target), and denote it as Amv . When IE outside
Amv , the pixel information in the projected image I ′E cannot
be captured by the image sensor due to the limited sampling
rate. Therefore, the attackers in the vicinity(i.e., far away from
Amv) can only get a gray image (see Fig. 5d) when they
capture the encrypted QR code image, and cannot sniff the
original QR code information.

B. Screen-imaging Moiré Simulation
The second stage is to simulate the Moiré pattern gen-

erated when a digital camera captures the encrypted QR
code displayed on the screen. The procedures of our screen-
imaging Moiré simulation system are illustrated in Fig. 6. Four
essential procedures are: perspective transformation, Bayer
CFA sampling, interpolation (also called demosaicing), and
noise adding. In the following part, we will describe the details
in the designs of the simulator.

1) Perspective Transformation: We simulate the image in-
formation captured on image plane before the Bayer CFA by

employing a pinhole camera model to project an encrypted
QR code image IE in 3D space onto the camera plane. For
simplification purposes, we use the camera coordinate system
and set the screen pixel size and the image pixel sensor size
(i.e., the size of each color filter in the CFA) to be 1. To ensure
the Moiré pattern is available, the encrypted QR code image
is placed at the focal point in the simulation. As mentioned
in Sec. III-A, the camera usually cannot be placed in the
perfect-match position Ppm. Moreover, the vibration pertur-
bations caused by the user’s hand holding the smartphone
result in various Moiré patterns. To generate a robust dataset
incorporating all possible situations, we randomly perturb the
translation (Tx, Ty , and Tz) and rotation of the encrypted QR
code to simulate the entire Moiré QR code patterns captured
by a camera in the whole Moiré-visible area Amv .

2) Bayer CFA Sampling: After the encrypted QR code
image is projected to the imaging plane through a random
homography, the CFA filters out the color information, and an
image sensor captures the light intensity of the encrypted QR
code. We simulate the CFA sampling process and calculate the
luminance by computing the overlapped information between
each color unit in the CFA and each pixel in the encrypted QR
code. For example, if a red color unit covers 80% of a white
pixel and 20% of a black pixel in the encrypted QR code, then
the luminance obtained by the image pixel sensor for that red
color unit is 0.8.

As shown in the 4th part in Fig. 6, when the black and white
pixels of the encrypted QR code are arranged in the same
pattern as the green filter in the Bayer CFA , the filtered color
of each block will be ‘purely green’ or ‘purple (red and blue)’.
However, the perspective transformation will cause the black
and white pixels in the encrypted QR code not be aligned with
CFA, and this non-alignment further leads to inconsistencies



Fig. 6: Pipeline of encryption and screen-imaging Moiré simulation from the standard QR code

of colors in lightness (i.e., blurring) and an inverse of Moiré
color. The blurring can be easily seen in Fig. 5c, and the
Moiré color inverse can be observed by comparing Figs. 5a
with 5c. The blocks of the same initial color are shown to
be chromatically different in the three Moiré QR code images
captured at different positions. Therefore, the non-alignment
between I ′E and CFA explains why a camera captures different
Moiré patterns at different positions in the Moiré-visible area.
Besides, the captured Moiré pattern is very sensitive to the
relative position of the camera to the screen, since even small
positional changes (i.e., at the pixel size level of the image
sensor) influence the captured Moiré pattern dramatically.

3) Interpolation: Interpolation (also known as demosaic-
ing) algorithms are used to reconstruct a complete RGB image
from an incomplete color sampling of a CFA (i.e., RAW image
). For example, one basic method is the bilinear interpolation,
which considers the nearest 2×2 neighborhood of known pixel
values around the computed position of an unknown pixel.
This method takes the weighted average of these 4 pixels
as the final interpolated value. However, one disadvantage
is that it may smooth sharp and high-frequency textures.
Other complex interpolation algorithms such as Smooth-hue
Interpolation [28], High-Quality Linear Filter [29], Gradient-
Based Threshold-Free [30], and Adams-Hamilton’s interpola-
tion [31], Variable Number of Gradients [32], Pixel Group-
ing [33], and Adaptive Homogeneity-Directed [34] have been
applied to smartphone photography in order to obtain more
detailed and clear resolution. Considering the fact that Moiré
QR images captured by cameras do not have sharp or high-
frequency textures and their colors vary smoothly, the spatial
features of the Moiré phenomenon can be preserved once a
reasonable interpolation algorithm is chosen. In the experi-
ment, we use the bilinear interpolation algorithm and some
mainstream linear interpolation algorithms for screen-imaging
Moiré simulation respectively. The simulated results shown in

(a) Bilinear (b) SI [28] (c) HQL [29] (d) GBTF [30]

Fig. 7: Impacts of different interpolation algorithms

Fig. 7 also confirm that the choice of interpolation algorithm
does not have a substantial impact on our simulation. To speed
up the calculation, we choose bilinear interpolation as the
interpolation algorithm in our pipeline. The interpolated results
are also very similar to the ones taken by smartphones with
complex interpolation algorithms.

C. Data Augmentation

We design a data augmentation scheme to overcome the
issues derived from the diversity of cameras and screens on
the market. In detail, we approximate different color repre-
sentations between the screen-camera pairs with a series of
random affine color transformations (constant across the whole
simulated Moiré QR images from Sec. III-B) as follows:

• Saturation: convert the simulated image from RGB to
HLS, change the value of the S channel by a random
multiplier m ∼ U [0.5, 1.5]; then convert it back to the
RGB color space.

• Brightness and contrast: adjust the brightness and contrast
according to the formula: g(i, j) = αf(i, j) + β, where
α ∼ U [0.6, 1.4], β ∼ U [−0.3, 0.3], f(i, j) is the original
pixel value, and g(i, j) is the output pixel value.

• Color temperature: add random color offsets sr, sg to the
Red/Green channels and subtract a random offset sb to the
Blue channel with sr ∼ U [−0.4, 0.4], sg ∼ U [−0.4, 0.4],
sb ∼ U [−0.4, 0.4], srsg ≥ 0 and srsb ≤ 0.



D. Deep Moiré QR Code Decryption

In this section, we propose a deep learning based decryption
method. We use the notation Ψ to represent the function that
transfers the IM into the original QR code: IO = Ψ(IM ).
Considering that the decryption method needs to cope with
QR codes of different sizes, we use a U-Net [26] ”encoder-
decoder” style architecture for image-to-image translation.
The encoder has one Conv − ReLU layer with 64 4 × 4
spatial filters and seven Conv − BN − ReLU layers with
[128, 256, 512, 512, 512, 512, 512] 4 × 4 spatial filters where
Conv downsamples by a factor of 2 and ReLU is leaky with
slope 0.2. The decoder has seven Conv −BN −Dropout−
ReLU layers with a dropout rate of 50% where Conv upsam-
ples by a factor of 2 and ReLU is not leaky. After the last but
one layer in the decoder, an eventual convolution is applied
to map to RGB 3 channels, followed by a Tanh function. U-
Net can handle different input image sizes N ×N (as long as
N = 2k, k ∈ N+), and output the images with the same size
N ×N . Accordingly, Moiré QR code images are also resized
to the 2⌊log2 w+1⌋×2⌊log2 w+1⌋, where w is the width of Moiré
QR code images cropped from the captured image. The loss
function is set as follows:
LBCE(Ψ) =

1

N2

N−1∑
i,j=0

−wij [INij logIOij + (1− INij )log(1− IOij )]
(2)

where i, j the index of each pixel of the input and output
images and wij is the weight given to the loss of each pixel.

E. Post-processing

Moreover, a decrypted image output from the deep Moiré
decryption network needs to be post-processed to make the
final result consistent with the original QR code and improve
the decoding efficiency of the QR code reader. The post-
processing process is described as follows:

1) Determine the block size (i.e., the number of pixels
occupied in each block) of the QR code according to its
three position patterns in the corners, which are fixed as
7 blocks.

2) Segment the QR code by blocks, according to the
number of pixels occupied by each block.

3) Binarize each block based on the mean value of all pixels
in the box, unify each block of the QR codes into white
(i.e., RGB(255, 255, 255)) or black (i.e., RGB(0, 0, 0)).

IV. EVALUATION OF EFFECTIVENESS OF MOIRÉ
SIMULATION

A. Experiment Setup

We randomly generate 1000 messages (e.g., each message
consists of English letters and numbers) and use versions from
1 to 5 (i.e., side length of QR symbol from 21× 21 to 37×
37) and level “M” error correction capability (i.e., 15% data
recovery) to generate the corresponding 1000 original QR code
images.

1) Synthetic Training Dataset: For the training dataset, we
select 800 original QR code images to simulate the moiré
QR code images. For each original QR code, we generate
100 Moiré patterns by varying the perspective transformation
parameters (i.e., Tx, Ty , Tz , and Rx, Ry , Rz in Fig. 6) for each
standard QR code. In the data augmentation stage, we perform
10 random color transformations on each of the Moiré QR
codes generated above. Thus, the synthesized 800× 100× 10
Moiré QR images and their corresponding original images QR
code images are treated as a training dataset that is fed into
the U-Net based decryption network for training the model
Ms.

2) Real-world Test Dataset: For the test dataset, we encrypt
the remaining 200 QR code images as encrypted QR code
images and display them on the digital screens. Then, we
use the cameras to capture a real test dataset (called Ds) to
evaluate the model Ms, note that during the data collection,
the test cameras are randomly placed throughout 3D space,
both inside and outside of the Moiré-visible area. The test
screens in this experiment are: iPhone 7Plus (S1), iPhone 11
(S2), Samsung S7 (S3), and Huawei P40 (S4); and the test
cameras are: iPhone 6 (C1), iPhone XS (C2), Huawei P20Pro
(C3), Xiaomi 10Pro (C4). During the test data collection, the
test screen is set to automatic mode (i.e., the brightness and
the display mode are changed independently according to the
environment), and the test camera is also set to the automatic
mode when capturing pictures (i.e., the camera parameters,
such as the exposure time, ISO, and the white balance, are
adjusted automatically).

B. Real-world vs. Moiré Simulation

Here, we first evaluate the effectiveness of the synthetic
dataset derived from the screen-imaging Moiré simulation.
Each experimental screen-camera pair is fixed with tripods,
and the screen sequentially displays the 1000 encrypted QR
code images while the camera captures the corresponding
Moiré images. We change the relative position and rotation
of the camera and the screen five times and repeat the data
collection steps described above. 800 QR code images and the
corresponding captured Moiré QR code images are treated as
a real-world dataset, and we use them to train the deep Moiré
QR decryption model as Mr. The remaining 200 QR code
images and the corresponding captured Moiré QR code images
are the test dataset as Dr.

We compare the decryption performance of the two deep
decryption models: Ms trained using the synthetic dataset,
and Mi

r trained using the real-world dataset collected under
the constrained relative poses of the ith screen-camera pair.
The real-world test dataset Di

r of each screen-camera pair is
used to evaluate the performance of the above two models, and
the corresponding experimental results are shown in Fig. 8a.
We find that Ms achieves a decryption rate almost equal to
that of Mi

r, that is, the model trained using synthetic data can
reveal the original QR code well when decrypting the real-
world Moiré QR code.



(a) When testing with the real-world dataset Di
r collected in the

limited screen-camera relative poses

(b) When testing with the real-world dataset Ds collected in the
entire Moiré-visible area

Fig. 8: Decryption rates of two decryption models, one trained
using a limited real-world dataset and the other trained using
a synthetic dataset

Then, for each screen-camera pair, we use the test dataset
Ds from Sec. IV-A2 to evaluate the above two decryption
models Mr and Ms. The corresponding experimental results
shown in Fig. 8b confirm that the model Mr trained using
the limited real-world dataset cannot perform well when it
encounters the unknown Moiré QR codes that are not included
in the training dataset. However, the model Ms trained using
the synthetic dataset still performs well because the synthetic
dataset generated from the Moiré simulation and data augmen-
tation covers the entire Moiré-visible area and various screen
and camera hardware. In summary, this is further evidence of
the importance and effectiveness of the screen-imaging Moiré
simulation.

C. Ablation Study

We evaluate the role of the different modules in the Moiré
QR code simulator. The color filter array includes a variety
of image sensor matrices, such as Bayer matrix (RGGB
matrix), RGBW matrix and CYGM matrix. Considering that
the image sensor matrix is entirely determined by the camera
hardware, we do not analyze the effect of using different image
sensor matrices in the simulator. Consequently, we evaluate
the benefits of using different interpolation algorithms in the
simulator and whether or not to use the data augmentation
module.

1) interpolation algorithm: We utilize simulators with dif-
ferent interpolation algorithms(Bilinear Interpolation, Smooth-
hue Interpolation [28], High-Quality Linear Filter [29],
Gradient-Based Threshold-Free [30]) to generate synthesized
datasets and feed them into the U-net based decryption net-
work for training model Msi . Then we use the dataset Ds from

Sec. IV-A2 to evaluate these decryption models Msi . And
the results shown in Fig. 13a suggest that these interpolation
algorithms are well-adapted to our simulator and all provide
a satisfactory decryption performance.

2) Data Augmentation: Then we evaluate the functionality
of the data augmentation module. We utilize simulators with
or without the data augmentation module to generate the
synthesized datasets and obtain the trained models Msj .
Next, we use the same steps as above to test and get the
results as shown in Fig. 13b. The results demonstrate that the
data augmentation module is indeed an essential part of the
simulator.

V. EVALUATION OF DEEP MOIRÉ QR DECRYPTION

In this section, we comprehensively compare the decryption
performance of the deep learning based decryption scheme
proposed in this paper and the multi-frame decryption scheme
proposed in [8] in the real-world data. We choose the iPhone
7Plus as the test screen and then alternately display 10
encrypted QR codes on it. Then the Huawei P20Pro is selected
as the test camera and roughly fixed (by hand) at a certain
position, e.g., with the coarse grain of 1cm and 1◦, and
the Moiré QR code is recorded by video streaming. Every
20 frames of the Moiré images are input to a multi-frame
decoding method to recover the original QR code information.
One frame of the Moiré images is input to a deep Moiré
method to produce a standard QR code, and the output of
two consecutive frames is averaged as the final recovered QR
code information. In the following parts, we compare the two
decryption methods in terms of the decryption rate and the
decryption latency.

A. Decryption Robustness in Moiré-visible Area

We first evaluate the influence of the offset distance against
the Ppm (i.e., perfect-match pose defined in Sec. III-A) on
the decryption performance. During the experiment, the test
camera is placed parallel to the screen, so that the angular
deviations in the three axes are zero. We take the Ppm as the
origin and the direction of the camera facing the screen as the
z-axis to establish the coordinate system, then we change the
offset distance (i.e., Tx,Ty , and Tz) in three axes. The batch
test is conducted every 1cm in the range [−4cm, 4cm] of the
z-axis. In each batch, 92 tests are conducted every 1cm in the
range [−4cm, 4cm] of x−axis and y−axis respectively. The
decryption rate of the aforementioned two decryption methods
is shown in Fig. 9. It is noteworthy that the closer to the
Ppm, the higher the decryption rate. Due to the end-to-end
training of the deep Moiré QR code decryption method, even
if the offset distance exceeds 4cm, the decryption rate reaches
about 80%, which is significantly better than the multi-frame
decryption.

Then, we evaluate the influence of the offset angle against
the Ppm on the decryption performance. We fix the camera
center at the Ppm and rotate Rx, Ry, Rz around θx−, θy− and
θz−axis. For Rx, Ry, Rz , we perform a test every 2 degrees
in the range of [−5◦, 5◦] and conduct 73 tests totally. It can



Fig. 9: Decryption heatmap of our proposed deep learning based decryption method. In each subfigure, the z−axis offset is
fixed, and the offsets of x− and y−axes are increased from −4cm to 4cm with the center point being 0cm

Fig. 10: Decryption heatmap of the multi-frame decryption method [8] where the offset distances on all three axes are in the
range of [−4cm, 4cm]

Fig. 11: Decryption heatmap of our proposed deep learning based decryption method. In each subfigure, the offset of θz−axis
is fixed, and the offsets of θx− and θy−axes are increased from −5◦ to 5◦ with the center point being 0◦

Fig. 12: Decryption heatmap of multi-frame decryption method [8] where the offset angles on all three axes are [−5◦, 5◦]

(a) simulators with different in-
terpolation algorithms

(b) simulators with or
without data augmentation

Fig. 13: Decryption rates of decryption models trained using
synthetic datasets produced by different simulators

be seen that the decryption rate is highest at the Ppm and the
deep Moiré QR decryption scheme has a significantly better
performance than the multi-frame decryption method [8].

B. Secure Scanning Range

To determine the secure scanning range of the Moiré QR
code system when using the deep Moiré decryption method,
we performed experiments in 3D space and tested the decryp-
tion rate when the camera is offset from the screen by the
perfect-match position point.

Considering that users will always turn their mobile de-
vice’s cameras towards the screen in real-world scenarios, we
change the position of the test cameras with different offset

distances (i.e., Tx, Ty , Tz) and keep them pointed towards
the screens at all times. To obtain clearer visualization and
better analysis of experimental results, we change the camera
pose only in a single dimension and leave the remaining two
dimensions unchanged. At each test position, we change the
offset angle lightly (i.e., Rx, Ry , and Rz follow a standard
normal distribution N(0, 1)) and take the average of all the
results in the position as the final result. As shown in Fig. 14,
we note that the best decryption range (i.e., the decryption
rate is over 80%) in the x− and y− and z−axes are all
in [−4cm, 4cm] compared to the perfect-match point. And
if the offset distance in a translation axis is above 10cm,
our proposed deep Moiré decryption method can’t reveal
the original QR code information. Therefore, the results
demonstrate that the Moiré QR code system has high security
in physical space. Even with an end-to-end supervised learning
strategy, the decryption model has difficulty decoding the
images captured outside the Moiré-visible area, which ensures
secure communication of the QR code.

C. Impact of Devices

As shown in Fig. 14 and Fig. 8, we implement experi-
ments with several screen-camera pairs. Although the different
screen-camera pairs can make a difference in moiré QR code



(a) Offset distance Tx (b) Offset distance Ty (c) Offset distance Tz

Fig. 14: Decryption rate of the deep Moiré QR decryption for offset distances and angles on the x− /y − /z−axis compared
to the perfect-match point

Fig. 15: Impact of lighting conditions on decryption methods.
La: Outdoor at 8AM; Lb: Outdoor at 12AM; Lc: Outdoor at
11PM; Ld: Office; Le: Indoor with all lights off.

capture, all of these devices work in a similar manner and the
results only have a negligible difference.

D. Impact of Environment/Ambient

We evaluate our proposed Moiré QR code decryption
method under different ambient lighting conditions. Fig. 15
shows the decryption rate under different light conditions.
We found that thanks to the adaptive adjustment of screen
brightness, the impact of ambient environment illumination
can be nearly ignored.

E. Overall Comparison

Finally, we test the consumption of the two decryption
methods separately. A laptop equipped with an Intel i7-
10875H 2.80GHz CPU with 32GB RAM is used for the entire
offline decryption computation to test the memory overhead
and decryption delay of two decryption methods. The entire
decryption process is computed on the CPU. We denote the
memory overhead as the average memory consumption of the
entire decryption process. Moreover, we denote the decryption
latency Td as the sum of image acquisition time and Moiré
code decryption time.

For the deep Moiré QR code decryption scheme, we assume
that the model has been loaded in advance, and the model
loading time is not included in the calculation of delay. Td is
calculated by the following formula: Td = N

fps+Ta×N , where
N means the number of frames required by the decryption
method, fps is the camera frame rate when recording videos,
and Ta is the decryption time for a single frame.

The overall comparison is summarized in Tab. I. Based on
the decryption rate results, further experiments show that the

TABLE I: Overall comparison of two decryption methods

Multi-frame [8] Deep learning based
Distance range [−2cm, 2cm] [−4cm, 4cm]

Angle range [−4°, 4°] [−6°, 6°]
Decryption rate 98.6% (11.3 frames) 98.8% (2 frames)

Decryption latency 5.4± 0.07s 0.02± 0.006s
RAM 27.4MB 224.2MB

recommended input frames for the two decryption methods
to achieve quite a high accuracy (close to 100%) are: 16
frames for the multi-frame decryption method and 3 frames
for our proposed deep learning based decryption method. The
most important is that the deep Moiré QR decryption can
obtain negligible decryption latency (0.02s), while the multi-
frame decryption method needs average 5.4 seconds to decode
one encrypted QR code. Although the memory overhead of
the deep Moiré QR decryption method is 224.2MB, it is
still acceptable for mainstream mobile devices. Therefore, we
believe that our proposed deep Moiré QR decryption method
can make the Moiré QR code system widely used in mobile
application scenarios, which can improve the communication
security for the standard QR code system with almost the same
decryption latency.

VI. CONCLUSION

We present a novel decryption method based on deep
learning that achieves a decryption latency of 0.02 seconds and
a decryption rate of 98.8% for the Moiré QR code system. To
generate a robust dataset for the training process, we propose
a Moiré screen simulation method to synthesize Moiré QR
code images. This simulator can generate images that cover
the entire Moiré-visible area and physical camera-screen pairs.
The extensive experiment is conducted to demonstrate the
effectiveness of the proposed screen-imaging Moiré simulation
and the excellent and robust performance of the deep learning
based decryption model trained on the synthetic data. Deep
Moiré QR decryption method can be easily deployed on
mobile devices, and its outstanding decryption performance
brings new vitality to the Moiré QR code system.
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