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Figure 1: M2
Silent includes the multi-directional speaker system, acoustic signal modulation, and silent speech recognition. 

The illustration shows how FMCW is used as a carrier for simultaneous audio transmission and silent speech sensing. 
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Abstract 
We introduce M2

Silent, which enables multi-user silent speech 
interactions in shared spaces using multi-directional speakers. En-
suring privacy during interactions with voice-controlled systems 
presents significant challenges, particularly in environments with 
multiple individuals, such as libraries, offices, or vehicles. M2

Silent 
addresses this by allowing users to communicate silently, without 
producing audible speech, using acoustic sensing integrated into 
directional speakers. We leverage FMCW signals as audio carriers, 
simultaneously playing audio and sensing the user’s silent speech. 
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To handle the challenge of multiple users interacting simultane-

ously, we propose time-shifted FMCW signals and blind source 
separation algorithms, which help isolate and accurately recognize 
the speech features of each user. We also present a deep-learning 
model for real-time silent speech recognition. M2

Silent achieves 
Word Error Rate (WER) of 6.5% and Sequence Error Rate (SER) of 
12.8% in multi-user silent speech recognition while maintaining 
high audio quality, offering a novel solution for privacy-preserving, 
multi-user silent interactions in shared spaces. 

CCS Concepts 
• Human-centered computing → Ubiquitous and mobile com-

puting systems and tools. 

Keywords 
Silent speech interaction, Multi-directional speaker, Air nonlinear-
ity, Acoustic sensing 
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1 Introduction 
As voice control systems rapidly integrate into our daily lives, main-

taining privacy during interactions has become increasingly im-

portant. While voice assistants on smartphones and smart devices 
enhance user convenience, they often face limitations in settings 
such as vehicles, museums, and offices due to privacy concerns, 
discomfort from speaking openly, and challenges in noisy envi-
ronments. Silent speech interfaces (SSI) [20, 59, 99] address these 
issues by enabling users to communicate without producing audi-
ble speech, making them useful for speech impairments or silent 
communication needs. Many SSIs rely on wireless signals to detect 
speech movements, with current research exploring electromyog-

raphy (EMG) [47], ultrasound imaging [102], and video-based lip 
reading [87]. These techniques hold promise for improving privacy 
and facilitating more discreet user interactions. 

In real-world scenarios such as museums or driving, SSIs must 
not only detect silent speech but also deliver feedback (e.g., exhibit 
descriptions or navigation instructions). Nevertheless, SSIs that 
rely on camera or millimeter-wave [94] require supplementary de-
vices to facilitate two-way communication with users. In contrast, 
acoustic-based systems can employ frequency division multiplexing, 
using low frequencies for audio transmission and high frequencies 
(around 20 kHz) for motion detection, thus integrating silent speech 
recognition with audio output. However, the spherical wave prop-
agation in these acoustic systems [85] can create noise in public 
spaces, raising privacy issues. Low-frequency speaker arrays [69] 
offer directional sound but are often bulky and still suffer from leak-
age. Moreover, multiple users typically require interaction in public 
settings, making individual systems per user impractical. Current 
acoustic SSIs focus on a single user, such as those integrated with 
smartphones [74], smartwatches [97], or smart glasses [101], and 

necessitate close proximity to the device. While these systems offer 
personalization and enhanced privacy, they are incapable of serv-
ing individuals not equipped with such devices, such as museum 
visitors or large crowds in public spaces. This limitation renders 
them unsuitable for open and dynamic environments. 

To this end, we propose M2
Silent, a novel acoustic platform 

for multi-user simultaneous "private" audible signal transmission 
and "concealed" acoustic silent speech recognition. Parametric ar-
rays [95] offer a promising approach for directed sound transmis-

sion. This method modulates low-frequency sound waves onto 
high-frequency carriers, where the low-frequency audio is demod-

ulated through air nonlinearity and maintains the high directivity 
of the high-frequency sound waves. For instance, MuDiS [45] is 
capable of delivering audible sound to users from multiple direc-
tions without leakage, ensuring silence in other areas. However, 
it supports only one-way communication and lacks sensing capa-
bilities. As shown in Fig. 1, M2

Silent delivers focused audio to 
multiple users while simultaneously capturing their silent speech. 
Fig. 2 illustrates various applications. Fig. 2(a) shows an in-car 
space where M2

Silent interact simultaneously with the driver 
and passenger. The driver engages in silent interaction related to 
navigation, while the passenger interacts with music without inter-
ference, maintaining a quiet environment inside the car. In a busy 
museum (Fig.2(b)), visitors can receive personalized audio feedback 
on exhibits without disturbing others. At a bank counter (Fig. 2(c)), 
users can silently convey sensitive transaction information and hear 
private responses. By eliminating the need for wearable or supple-
mental devices, M2

Silent reduces interaction costs and enhances 
privacy in shared spaces. 

However, implementing such a multi-user silent speech interac-
tion system in a shared space poses several challenges. First, tradi-
tional acoustic systems use frequency division multiplexing to trans-
mit both sensing signals (around 20kHz) and low-frequency sound 
waves simultaneously. However, since parametric array speakers 
can only operate within a narrow ultrasonic frequency band, em-

bedding the sensing signals for silent speech recognition without 
interfering with the original directional playback function of the 
multi-directional speakers is a challenge. Second, in multi-user 
scenarios, the system needs to support simultaneous interaction 
from multiple users. However, the signals received by the same 
microphone may have overlapping lip movement features from 
different users. Furthermore, it is necessary to ensure both silent 
speech recognition functionality and real-time system performance 
in real-world use. 

This paper aims to implement multi-user silent speech interac-
tion in a shared space using a multi-directional speaker. To detect 
users’ silent speech while simultaneously playing audio signals, we 
innovatively use Frequency Modulated Continuous Wave (FMCW) 
signals as the audio carrier. After undergoing nonlinear demodula-

tion in the air, the transmitted signal provides clear audio to the user. 
Meanwhile, the FMCW signal as the carrier is reflected and cap-
tures silent speech from multiple individuals. To separate different 
users’ silent speech features, we transmit FMCW signals with time 
offsets in different directions, which results in unique features for 
each user appearing on different spectrums. To further address the 
potential feature overlap, we introduce a blind source separation 
algorithm to cleanly isolate the features of each user. Finally, we 
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(a) In-car space: M2
Silent allows the driver to engage 

in silent interaction with the navigation system while 
the passenger controls the music without interference. 

(b) Museum: Visitors can interact with M2
Silent to 

ask for exhibit information or directions, while other 
visitors are not disturbed by the interactions. 

(c) Bank counter: A user communicates sensitive in-
formation of transactions through M2

Silent, allowing 
private conversations between the user and the teller. 

Figure 2: Potential use cases of M2
Silent. 

utilize a deep residual model, SilentMatch, to accurately recognize 
users’ silent speech. Real-time interaction is facilitated through the 
continuous processing of input sequences using a sliding window 
approach, ensuring seamless and efficient recognition. 

In summary, the main contributions of this paper are as follows: 

• To the best of our knowledge, M2
Silent appears to be the first 

silent speech interaction system for open environments, using 
multi-directional speakers to enable device-free non-intrusive 
multi-user interaction. The system suits quiet and private set-
tings and pushes SSI applications toward more public use cases. 

• We propose a synchronous modulation technique leverag-
ing air nonlinearity, which innovatively employs frequency-
modulated continuous wave (FMCW) as audio carriers. This 
approach enables directional loudspeakers to simultaneously 
transmit audio and sensing signals, facilitating silent speech 
recognition for multiple users. 

• We propose time-shifted FMCW on directional acoustic beams 
for different users, utilizing a blind source separation algo-
rithm for simultaneous multi-user interactions. Additionally, 
we implement a silent word recognition model to extract lip 
movement features, employing a sliding window approach to 
facilitate sentence-level speech recognition. 

• The extensive experiments in real-world environments demon-

strate that M2
Silent achieves a low word error rate (WER) 

of 6.5% and a sequence error rate (SER) of 12.8% in multi-user 
silent speech recognition while maintaining high audio quality, 
as reflected by a PESQ score of 2.81. 

2 Related Work 

2.1 Silent Speech Recognition 
2.1.1 Acoustic-based Methods. Acoustic-based methods for silent 
speech recognition have gained considerable attention for their 
ability to capture subtle speech-related movements. For example, 
SoundLip [98] uses acoustic sensing for silent lip interaction, recog-
nizing both individual words and continuous sentences. EarCom-

mand [34] leverages ear canal deformations for silent speech detec-
tion, illustrating the feasibility of everyday wearable integration. 

EchoSpeech [101] highlights non-intrusiveness by employing mini-

mally obtrusive eyewear for discrete and continuous speech recog-
nition. HPSpeech [99] relies on commodity headphones to sense 
jaw movements, indicating the versatility of acoustic sensing across 
diverse form factors. Meanwhile, Lipwatch [97] and EarSSR [77] 
continue to advance the field with smartwatch- and earphone-based 
silent speech recognition, emphasizing user convenience and seam-

less integration into common wearable technologies. 
In contrast to systems that rely on additional wearable devices 

such as headphones [34, 77, 99], smartwatches [97], or glasses [101] 
which users may find uncomfortable or aesthetically displeas-
ing [32, 91], M2

Silent facilitates silent voice interaction without 
requiring users to wear any external sensors. Other approaches use 
smartphones [98], requiring the user’s lips to be very close to the 
phone, which makes them impractical in scenarios where the user’s 
hands are occupied (e.g., holding an umbrella or writing). In con-
trast, M2

Silent only requires the user to face a multi-directional 
speaker from a distance for silent speech interactions without addi-
tional effort. Moreover, existing systems are highly personalized 
and not suitable for simultaneous use by multiple users in public en-
vironments. However, it is essential to provide voice interaction for 
numerous users in various scenarios, such as museums or vehicles. 

2.1.2 Beyond Acoustic Methods. Other silent speech recognition 
methods employ diverse sensing techniques. For example, mSi-

lent [94] leverages mmWave radar with deep learning for fine-
grained speech features in various conversational contexts, while 
Lee et al. [43] and TWLip [107] use IR-UWB and coherent SISO 
radar, respectively, to enable contactless silent speech recognition. 
Camera-based approaches also feature prominently. SpeeChin [100] 
uses an IR camera on a smart necklace to capture neck and face 
images for silent speech commands, and LipLearner [74] employs 
contrastive and few-shot transfer learning with mobile device cam-

eras to facilitate customizable recognition. MELDER [58] further 
emphasizes real-time processing and optimization on mobile de-
vices, achieving high accuracy and speed. Beyond these methods, 
IMUs and magnetic sensing offer additional alternatives. Srivas-
tava et al. [71] recognizes unvoiced commands via a twin-IMU 
wearable that tracks jaw motion, and Hofe et al. [24] employs 
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magnetic sensors for a small-vocabulary silent speech interface tai-
lored to users with speech impairments. Meanwhile, sEMG-based 
systems [47] capture muscle activity to decode silently mouthed 
phrases, demonstrating the technology’s potential in handling more 
complex vocabularies. 

Although these non-acoustic sensing methods, such as 
millimeter-wave [94], IR-UWB radar [43], coherent radar [107], 
are capable of supporting longer ranges, they cannot facilitate 
bidirectional acoustic communication, meaning users cannot re-
ceive audible feedback. In contrast, M2

Silent is a highly integrated 
acoustic device that allows users to emit silent speech and hear 
acoustic feedback simultaneously without investing in additional 
sensing equipment. On the other hand, camera-based solutions 
on smartphones [58, 74], while enabling bidirectional interaction, 
have raised ongoing privacy concerns. They are also susceptible to 
lighting conditions, and these devices are private and meant for in-
dividual use only. Other sensing methods, such as IR camera [100], 
IMUs [71], magnetic fields [24], or sEMG [47], require users to wear 
the device around their necks or extremely close to their faces or 
mouths, which can be uncomfortable. In contrast, M2

Silent will 
not cause discomfort to users. 

2.1.3 Difference from Whispered Speech Recognition. Various stud-
ies focus on whispered speech recognition [13, 22, 64, 65]. The key 
distinction between whispered speech and silent speech lies in the 
fact that whispered speech is audible but at a lower volume and 
requires the user to be very close to the microphone. In contrast, 
silent speech is completely inaudible, relying on non-acoustic sig-
nals such as lip movements, muscle activity, or skin vibrations, 
which require specialized sensors like EMG [47] or speaker micro-

phones [98]. WESPER [65] suggests that whispered speech, being 
directly captured by microphones, has the potential to be converted 
into normal speech with reduced model training costs. However, 
whispered speech’s low volume makes it difficult to capture in noisy 
environments or from a distance. Silent speech, on the other hand, 
offers the advantage of usability in noisy environments, with sys-
tems like M2

Silent employing multi-directional speakers to enable 
long-distance silent speech recognition even in open scenarios. 

2.2 Directional Speaker 
2.2.1 Principles of Directional Speakers. Directional speakers, par-
ticularly those using air nonlinearity, have been extensively studied 
in acoustic engineering. Westervelt [89] and Yang [92] demon-

strated that nonlinear propagation in air enables ultrasound demod-

ulation, resulting in highly focused sound beams. Early projects by 
Woodynorris and Yoneyama [53, 93] led to practical devices such as 
the SoundLazer [37], employing air nonlinearity to deliver tightly 
directed audio. Originally developed for underwater applications 
like sub-bottom profiling [26] and communication [39], paramet-

ric arrays were later adapted for air-based usage. This approach 
provides precise, compact sound projection in directional speak-
ers [84, 95], as well as in sound spot generation [54, 105], targeted 
communication [4, 11], and personalized sound fields [63, 106]. 

2.2.2 The Implementation of Multi-directional Speakers. Multi-

directional speakers employ phased arrays via space or time division 
multiplexing. Early work [69] relied on large low-frequency devices 

3.2 Empowering Directional Speakers with 
Sensing 

Figure 3: System overview. M2
Silent consists of three 

core components: (a) a transducer array producing multi-

directional beams for focused sound transmission, (b) a signal 
modulation stage that modulates audio onto FMCW signals 
with optimization and noise reduction, and (c) a silent speech 
recognition module employing time-shifted FMCW, cross-
correlation, blind source separation, and the SilentMatch 
model to accurately recognize multiple users’ silent speech. 

for multi-angle sound projection, constrained by significant size 
requirements. Ultrasonic systems [10, 67] use air nonlinearity and 
multi-beamforming but typically emit the same audio in multiple 
directions and allow only a limited number of angles. MuDiS [45] 
addresses these issues by introducing a specialized ultrasonic trans-
ducer cell structure to expand steering angles while minimizing 
leakage, thereby achieving wide-angle digital steering and more 
flexible multi-directional capabilities. 

3 M
2
Silent Framework 

3.1 System Overview 
In this paper, we introduce M2

Silent (Fig. 3), a system that enables 
silent speech interactions for multiple users in shared spaces by 
leveraging a multi-directional speaker [45] (see Sec.A.1 for more 
implementation details). M2

Silent employs Frequency Modulated 
Continuous Wave (FMCW) signals [73] both as an audio carrier and 
a sensing mechanism, simultaneously broadcasting audio while de-
tecting silent speech via reflections from users’ lip movements and 
facial dynamics. To support multiple users, M2

Silent introduces 
time-shifted FMCW signals in various directions, enabling separa-
tion and recognition of silent speech from different directions. A 
blind source separation algorithm further isolates individual speech 
signals. Additionally, the system incorporates a silent word recog-
nition model with a sliding window for real-time lip movement 
analysis. By combining directional speakers, FMCW signals, and 
deep learning, M2

Silent ensures high-quality audio transmission 
and accurate silent speech recognition for multi-user interactions. 

In this section, we introduce how to enable directional speakers 
with sensing capabilities using FMCW signals. 

3.2.1 Using FMCW Signal as Audio Carrier. Considering an FMCW 
signal that consists of multiple chirps within one period, its time-

domain expression can be written as: 
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(a) Modulated audio signal. 

0.2 0.4 0.6 0.8 
Time (s) 

18 

19 

20 

21 

22 

23 

24

Fr
eq

ue
nc

y (
kH

z)
(b) Signal after modulation. 
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(c) Demodulated signal. 

Figure 4: (a) A 1-second audio clip of a female voice is shown, 
representing the original audio used for modulation. (b) The 
low-frequency signal has been modulated onto the FMCW 
signal. (c) The signal received after air nonlinearity demodu-

lation is shown, closely resembling the original signal. 

𝐹 𝑀𝐶𝑊 (𝑡 ) = 
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rect 

 
𝑡 − 𝑛𝑇𝑐 
𝑇𝑐 

 
·cos 

 
2𝜋 

 
𝑓0 + 

𝐵 
2𝑇𝑐 

(𝑡 − 𝑛𝑇𝑐 ) 
 
(𝑡 − 𝑛𝑇𝑐 ) 

 
where 𝑁 is the number of chirps, 𝑇𝑐 is the chirp duration, 𝑓0 is the 
starting frequency, 𝐵 is the bandwidth, and 𝑛 is the chirp index. To 
use FMCW as a carrier in directional speakers, the audio content 
𝑚 (𝑡 ) is modulated as: 

𝑠 (𝑡 ) = [1 +𝑚 (𝑡 )] 𝐹 𝑀𝐶𝑊 (𝑡 ) 
With a center frequency of 21𝑘𝐻𝑧, a bandwidth of 3𝑘𝐻𝑧, and a 
chirp length of 0.1𝑠 , the modulated audio (e.g., a voice clip shown 
in Fig. 4(a)) demonstrated successful low-frequency modulation 
onto the FMCW signal (Fig. 4(b)). After demodulation, the received 
signal closely resembled the original, as shown in Fig. 4(c). 

However, the sound quality significantly degraded, with a percep-
tual evaluation of speech quality (PESQ, a metric to assess speech 
quality mentioned in Sec. 5.1.2) score dropping by about 1. This 
degradation, attributed to the rapid frequency changes in FMCW, 
causes instability. Therefore, we selected the FMCW signal with 
the best auditory sense by verifying FMCW signals with different 
waveforms, chirp lengths, and bandwidths (see Sec. A.2 for details). 
We empirically choosed an FMCW signal with a linear triangle 
shape, a bandwidth of 2𝑘𝐻𝑧, and a chirp length of 0.25𝑠 as the 
carrier signal and used it for sensing simultaneously. 

3.2.2 Optimization-based Noise Reduction in Demodulation. While 
our designed FMCW signal improves audio quality, its time-varying 
frequency still induces variations in perceived sound intensity due 
to the ultrasonic array’s frequency response. Moreover, nonlin-
ear distortions from ultrasonic modulation must be eliminated. To 
address these issues, we introduce an optimization method that 
fine-tunes the source audio before modulation. 

Suppose the original audio signal in the frequency domain is 
𝑥 (𝑓 ), where 𝑓 is the frequency. Our fine-tuning is multiplying 
the frequency domain of the audio by optimizable amplitude and 
phase coefficients, 𝐴(𝑓 ) and 𝜙 (𝑓 ), yielding: 𝑥 (𝑓 ) = 𝐴(𝑓 ) · 𝑥 (𝑓 ) · 
𝑒 𝑗 𝜙 (𝑓 ) 

. Our goal is to make the demodulated audio closely match 
the original signal after nonlinear distortion. We formulate the 
optimization objective as:   

min ∥LP [(1 2 + 𝑥)𝐹𝑀𝐶𝑊 (𝑡 )] − 𝑥 ∥2 

where LP {·} is a function that models the audible portion of the 
signal after accounting for the speaker’s frequency response and 

(a) Time-shifted FMCW signals. (b) Multiple FMCW signals transmitted 
in different directions. 

Figure 5: Time-shifted FMCW signal emission in multiple 
directions. 

subsequent nonlinear demodulation. We use gradient descent for 
optimization. Optimizing one second of audio requires only 0.032𝑠 , 
and with streaming, this meets real-time playback requirements. 

3.3 Multi-User Silent Speech Feature Extraction 
and Segmentation 

In the previous section, we used FMCW signals to maintain the 
speaker’s directional capabilities. Next, we utilize these signals for 
interaction, capturing real-time facial and lip dynamics of multiple 
users to enable multi-user silent speech recognition. 

3.3.1 Acoustic-based Silent Speech Feature. In this study, silent 
speech, characterized by inaudible articulatory movements, is 
captured

2 using FMCW signals. M Silent extracts features by 
cross-correlating transmitted and received signals to produce echo 
frames [86, 101]. Through differential processing, these frames re-
veal subtle facial and muscle dynamics essential for decoding speech 
(the algorithm for silent speech extraction is detailed in Sec. A.3). 

However, when dealing with multiple users, the signal spec-
trum becomes mixed, causing the silent speech features of each 
individual to overlap. The similar strength of these mixed signals 
makes it difficult to separate them using traditional methods. Thus, 
a method is required to effectively isolate these features. 

3.3.2 Time-shifted FMCW Signal Emission in Multiple Directions. 
When multiple users are speaking silently, the features will be 
aliased together. Can we separate the features with only one single 
microphone by changing the way the FMCW signals are emitted in 
different directions? We propose a segmentation method in which 
the FMCW carriers transmitted in different directions have a certain 
time offset (Fig. 5(a)) so that the features of different users can be 
separated directly based on the separated cross-correlation peaks. 

We assume 𝑁 users interact with M2
Silent in 𝑁 directions 

(Fig. 5(b) shows the two-user case). In the signal sent to each user, 
we add a cyclic time shift to the FMCW signal. The time shift for 
the 𝑖 -th user is (𝑖 − 1)𝑡

shift
. The silent speech feature of the 𝑖 -th user 

will be carried by the FMCW signal after (𝑖 −1)𝑡
shift

. At the receiver, 
all reflected signals are captured by a single microphone. We cross-
correlate the reflected signal with the FMCW signal sent to the first 
user without any time shift. The sampling interval between the 
silent speech features of the (𝑖 + 1)-th user and the 𝑖-th user in the 
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Figure 6: Blind source separation (BSS) [14] applied to sepa-
rate features of multiple users. The diagram shows the echo 
profiles before and after applying BSS to differentiate be-
tween users’ silent speech features. 

cross-correlation function is 

ΔSamples = 𝑠𝑟 · 𝑡
shift

, 

where 𝑠𝑟 is the sampling rate, 96𝑘𝐻 𝑧. Fig. 6 shows the extracted 
cross-correlation function in the case of two users. Since we use 
a time shift of 0.02𝑠 , the silent speech features of the second user 
are shifted by 1920 sampling points compared to the first user. By 
extracting the sample points corresponding to each user, we can 
obtain the silent speech features of each user. 

Nevertheless, we still observe slight leakage of each user’s fea-
tures in others’ echo profiles. This occurs because the FMCW carrier, 
which is much stronger than the audio component, leaks in both 
directions and mixes the reflected signals. To tackle this, we pro-
pose a blind source separation method to decompose each user’s 
silent speech features and enhance recognition performance. 

3.3.3 Blind Source Separation of Mixed Features. As shown in Fig. 6, 
we use the blind source separation (BSS) method to segment the 
mixed features. We first analyze the characteristics of the mixed 
features to illustrate the applicability of the BSS method and then 
explain how we use this method for feature segmentation. 

Assuming that the multi-directional speaker serves users in 𝑁 
different directions, for the 𝑖 -th user, its silent speech feature 𝐹𝑚𝑖𝑥 

𝑖
on the spectrum graph can be expressed as 

𝐹 𝑚𝑖𝑥 
𝑖 = 𝜔𝑖 𝐹𝑖 + 

𝑁∑︁ 

𝑗 ≠𝑖 

𝜔𝑖 𝑗 𝐹 𝑗 

where 𝐹𝑖 is the clean feature of the 𝑖 -th user, 𝜔𝑖 is the amplitude 
weight corresponding to the main lobe, and 𝜔𝑖 𝑗 is the amplitude 
weight corresponding to the leakage of the other 𝑗 -th user in the 
𝑖 -th direction, which is different for each other user because the 
intensity of the side lobe changes with the angle in the beam pattern. 
For all users, we formulate this in matrix form as F𝑚𝑖𝑥 = 𝐴F, where 
𝐴 is the mixing matrix representing how the sources combine into 
the observed signals, F𝑚𝑖𝑥 

is the matrix of all users’ 𝐹𝑚𝑖𝑥 
combined. 

We apply the FastICA algorithm [42] to perform Blind Source 
Separation to recover the original source signals from the observed 
mixed signals, and finally get the silent speech features for all users. 
A detailed description of the blind source separation algorithm can 
be found in Sec. A.4. 

3.4 Streaming Silent Speech Recognition 
M

2
Silent is designed for real-time silent speech processing with 

deep learning, enabling rapid responses. We treat streaming in-
puts as word sequences and adopt a compact word recognition 
model [46] for quick training and transfer learning, reducing com-

plexity and enhancing portability. For streaming, we define time 
windows based on natural speaking rates [25], sliding over silent 
speech features with minimal overlap. 

3.4.1 Word Recognition Model. We propose SilentMatch for silent 
word recognition combined with streaming processing to enable 
real-time silent speech recognition. 
Word feature extraction. Based on Sec. 3.3, we further refine 
the feature extraction approach by focusing on the processing of 
silent word features. Specifically, in the time domain, we capture 
continuous features over short periods by selecting a time window 
with the same time as every chirp, with a 0.1𝑠 step size for sliding 
window feature extraction. Based on average human speech speed, 
we empirically set the length of each possible word to 1𝑠 . Addi-
tionally, in the frequency domain, we use Fbank to map the data 
into a 64-dimensional frequency space, compressing the model’s 
frequency domain features to avoid redundancy from overly similar 
nearby frequency features. 
Word recognition. The extracted features are then fed into Silent-
Match model, which is inspired by the framework presented in [46]. 
This network is essentially a convolutional neural network, a struc-
ture that has been employed in previous silent speech recognition 
studies [97, 101]. Additionally, the echo profiles are analogous to 
spectrograms used in audible speech recognition. Therefore, we 
utilized this network and verified in Sec. 5.4.1 that its recognition 
accuracy is higher than that of other networks. The detailed de-
scription of the network structure can be found in Sec. A.5. 

3.4.2 Streaming Recognition. During real-time prediction, 
M

2
Silent processes streaming silent speech features using a 

sliding window. We set the window to 1𝑠 to capture an entire word, 
with a 0.15𝑠 stride to accommodate faster speaking rates (around 
100𝑤 𝑝𝑚). Although this approach may cause partial overlap, we 
address it through data augmentation (Sec. 4.3) by incorporating 
portions of neighboring words during training. 

Due to multiple frames capturing the same word, duplicates 
are removed based on typical human speech speeds, allowing for 
legitimate repetition (e.g., strings of numbers). We then enhance 
recognition accuracy via an N-gram-based correction method [52], 
which extracts linguistic features (unigram, bigram, trigram, and 
word posterior probabilities) and feeds them into a CRF [41]. The 
CRF detects errors and performs corrections by selecting more 
probable candidates or restructuring sentences. 

4 Dataset Construction 

4.1 Word Set and Possible Sequences 
The word set (Tab. 1) is crucial for accurate intent interpretation. 
It includes essential action/status words (e.g., “Can,” “Need,” “Yes,” 
“No”), numerical digits (“Zero” to “Nine”), and common conjunc-
tions/pronouns (“And,” “Or,” “I,” “You”), thereby covering most rou-
tine commands and queries. 
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(a) Uncrowded indoor space. (b) Crowded indoor space. (c) Outdoor space. 

Figure 7: Different environments of data collection. 

Table 1: Word Set 

Types Words 

Action/Status Can, Need, Will, Yes, No, Up, 
Down, Left, Right, On, Off, Stop, 
Go, Help, Mute, Unmute, Shut, 
Volume, Turn, Louder, Lower 

Digits Zero, One, Two, Three, Four, 
Five, Six, Seven, Eight, Nine 

Conjunctions/Pronouns/... And, Or, But, I, You, It, The, To, 
Then, Again 

Table 2: Possible Sequences 

Types Sequences 

Simple Commands 

Volume up. 

Turn Left. 

Shut down. 

Digital Inputs 
Three, one, six, five. 

Eight, six, nine, two, four, one. 

Query Sentences 

I can help you. 

I need you to shut it off. 

Can you help me turn the volume 
louder? 

No, try it again. 

Yes, I will unmute it and then turn the 
volume up. 

As shown in Tab. 2, these words can combine into flexible se-
quences, from simple commands (“Volume up,” “Turn left”) to more 
complex requests (“Can you help me turn the volume louder?”). 
Such sequences may be complete sentences, series of commands, 
or numerical strings, reflecting the variability of human speech. 

4.2 Data Collection. 
4.2.1 Participants. The data collection involved 20 participants 
with a broad demographic distribution. The participant pool con-
sisted of a gender distribution, 9 males and 11 females, and an age 
range spanning from 18 to 65 years. 

4.2.2 Environments. Participants were assigned to 3 different envi-
ronments to simulate realistic usage scenarios: 

• Uncrowded Indoor Space (Fig. 7(a)): This environment was a 
quiet and spacious room, allowing participants to focus on their 
silent speech interactions without distractions. 6 participants 
were assigned to this environment. 

• Crowded Indoor Space (Fig. 7(b)): This setting was designed 
to test the system’s performance in a more crowded yet acousti-
cally uncontrolled environment. 8 participants were allocated 
to this environment. 

• Outdoor Space (Fig. 7(c)): This environment is designed to 
simulate interactions 2 with M Silent used in some outdoor pub-
lic facilities, such as road alerts, advertisements, and more. The 
potentially noisy outdoor environment may pose a challenge. 
6 participants were assigned to this environment. 

4.2.3 Data Collection Protocol. Each participant was required to 
repeat every word from the word set 5 times and produce 200 
sequences. These sequences could either be predefined by the ex-
perimenters, consisting of combinations of words from the word set, 
or self-generated by the participants, as long as all words used were 
from the word set. This approach enabled the collection of both 
standard and user-generated sequences, enhancing the model’s gen-
eralization ability. Participants were instructed to speak at a slightly 
slower-than-average rate to ensure clarity in the silent speech inter-
actions and were encouraged to exaggerate their mouth movements 
to improve lip-reading accuracy. In multi-user scenarios, up to 4 
participants interacted simultaneously with M2

Silent, with each 
configuration (1 − 4 users) repeated 20 times per setting. Impor-

tantly, even in multi-user interactions, the data was processed to 
treat each word or sequence as a distinct instance for model training, 
following our feature segmentation method. 

4.2.4 Unseen Participants. To further evaluate M2
Silent’s perfor-

mance on unseen users, we recruited an additional 10 participants 
who were not part of the initial 20. These participants did not con-
tribute to the base model training but were allowed to fine-tune the 
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Figure 8: Hardware prototype setup for M2
Silent. This in-

cludes a view of the metasurface-embedded parametric array, 
amplifiers, and the sound card connections. 

model using a subset of commands. They were randomly assigned 
to the three environments and each repeated every word from the 
word set once and produced 50 sequences. 

4.2.5 Data Validation. After data collection, we excluded invalid 
data points caused by interruptions (e.g., participants stopping mid-

way) or incorrect speech (e.g., mispronouncing a word or sequence). 
Following this curation process, we obtained a final dataset con-
taining 4207 valid words and 4131 valid sequences. 

4.3 Data Augmentation 
To enhance the robustness of our silent speech recognition model, 
we employed several data augmentation techniques. 

4.3.1 Warping. Warping involves stretching or compressing the 
features along the time domain to simulate variations in speech 
speed, which helps the model learn to recognize the same word or 
sequence even when spoken more quickly or slowly. We applied 
warping with coefficients of [0.5, 2], where a coefficient of 0.5 com-

presses the time axis (simulating faster speech), and a coefficient of 
2 stretches it (simulating slower speech). 

4.3.2 Shifting. Shifting is applied in two ways: along the time 
domain and the frequency domain. In time-domain shifting, the 
technique shifts the features along the time axis to simulate different 
starting times of speech. We used shifting coefficients of [−1.2, 1.2] 
to create variations where the speech signal starts either earlier or 
later than usual. For frequency-domain shifting, the features 
are shifted along the frequency axis to simulate variations in the 
user’s distance from the multi-directional speaker. Coefficients of 
[−1.5, 1.5] were used to represent users being closer or farther from 
the speaker, respectively. 

4.3.3 Noising. Noising involves adding controlled levels of noise 
to the features and simulating changes in the signal-to-noise ratio 
(SNR) in the environment. Specifically, we introduced noise with 
coefficients of [0.06, 0.08]. 

5 Evaluation 

5.1 Evaluation Methodology 
5.1.1 Prototype. As depicted in Fig. 8, our prototype is a 
metasurface-embedded parametric array consisting of 4 × 8 ul-
trasonic transducers (Yisheng EU16AOF21H12T [2]) connected to 

an 8-channel audio source (Lisheng Sound Card [79]). Each channel 
is powered by a class D amplifier (Texas Instruments OPA541 [30]), 
which supports up to 50𝑊 output. The ultrasonic transducers op-
erate at a central frequency of 21𝑘𝐻 𝑧. Each transducer is housed 
within a metasurface cell, designed as described in [45]. The spacing 
between the outputs of adjacent channel cells is 8.2𝑚𝑚, correspond-
ing to half the wavelength of the 21𝑘𝐻 𝑧 signal. Additionally, the 
single microphone used to receive FMCW echo signals is a MEMS 
microphone (Analog Devices ADMP404 [17]) with a sampling rate 
of 96𝑘𝐻 𝑧, positioned centrally at the top of the speaker. 

For receiving audio emitted by the multi-directional speaker 
to measure audio quality, a binaural microphone (Headrec Audio 
BINAL 2 [7]) with a sampling rate of 96𝑘𝐻 𝑧 is used. 

5.1.2 Performance Metrics. We use the following metrics to evalu-
ate M2

Silent: 
Perceptual Evaluation of Speech Quality (PESQ). PESQ [66], 
standardized as ITU-T Recommendation P.862 [31], objectively mea-

sures speech transmission quality by comparing a reference audio 
signal to its degraded version. It aligns the signals in time, applies 
an auditory transform to map them to perceived loudness using psy-
choacoustic models, and quantifies distortions via symmetric and 
asymmetric disturbance measures. Audible errors are processed 
using masking thresholds and aggregated using a nonlinear 𝐿𝑝 
norm, which emphasizes local distortions. The final score ranging 
from 1 (poor) to 4.5 (excellent) is computed using the formula: 

𝑃 𝐸𝑆𝑄 = 4.5 − 0.1 · 𝑑sym − 0.0309 · 𝑑asym 

where 𝑑sym and 𝑑asym are disturbance measures. Scores above 2.5 
indicate that the audio can be heard clearly, while scores below 2 
indicate very poor audio quality. 
Word Error Rate (WER). WER is a standard metric for evaluating 
speech recognition performance, measuring how closely a sys-
tem’s output matches a reference text. Based on the Levenshtein 
distance [44], it calculates the minimum number of operations, 
substitutions (𝑆 ), deletions (𝐷 ), and insertions (𝐼 ) to transform one 
sequence into another. WER is computed as: 

𝑆 + 𝐷 + 𝐼 
𝑊 𝐸𝑅 = 

𝑁𝑤 

where 𝑁𝑤 is the total number of words in the reference text, which 
equals 𝑆 + 𝐷 + 𝐶 (𝐶 is the number of correctly recognized words). 
It ranges from 0 (perfect match) to 1 or higher (no similarity or 
completely incorrect output). 
Sequence Error Rate (SER). SER measures the accuracy of pre-
dicted sequences in tasks such as speech recognition, where the 
correct order of words or symbols is critical. Unlike WER, which 
focuses on individual words, SER assesses errors in the entire se-
quence, and it is computed as: 

𝑁  
𝑆 𝑅 𝑖𝑠
𝐸 = 

𝑁𝑠 

where 𝑁𝑖𝑠 is the number of incorrect sequences and 𝑁𝑠 is the total 
number of sequences. 

5.2 Overall Performance 
We use WER, SER, and PESQ to evaluate the overall performance 
of M2

Silent with different numbers of users (from 1 to 4). The 
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Figure 9: Overall Perfor-

mance: WER, SER, PESQ 
under different numbers of 
users. 
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Figure 10: Confusion ma-

trix of word-level recogni-
tion across the 41 words in 
the word set. 

results are shown in Fig. 9. PESQ decreases as the number of users 
increases. Initially, for a single user, the PESQ score is 3.02. How-
ever, as the number of users increases, the PESQ score decreases 
to 2.43 when there are 4 users. This indicates that the perceived 
speech quality decreases because the system has to handle more 
users simultaneously, but it also shows that using FMCW signals 
as carriers is fully capable of supporting multiple users. 

For silent speech recognition performance, we use WER and 
SER under within-user (w) and cross-user (c) conditions. WER-

w and WER-c represent the error rates within and across users, 
respectively, while SER-w and SER-c reflect sequence error rates 
for these conditions. Cross-user performance is evaluated using 
a fine-tuned model based on the 10 words from the users in 4.2.4. 
WER-w remains low, ranging from 4.56% to 8.96% as the number of 
users increases, while WER-c is higher, between 14.22% and 19.05%. 
This indicates better performance with within-user data than across 
users, suggesting that more words for fine-tuning could improve 
accuracy, though it may also complicate recognition for new users. 
For sequence testing, SER-w and SER-c show trends similar to WER, 
with SER-w ranging from 9.32% to 17.85%, and SER-c increasing 
from 21.87% to 30.96% as the number of users grows. This highlights 
that sequence errors become more prominent with multiple users. 
Overall, SER is acceptable, with an average error occurring once in 
five complete conversations, which meets the needs of most users 
in silent speech interactions. 

In addition, we explored the accuracy of each word from all 
within-user and cross-user test sets. From the confusion matrix 
shown in Fig. 10, the mean accuracy of each word is 92.13%, and 
the standard deviation is 6.49%. This shows that the model can 
recognize each word accurately. However, for some words with 
very similar pronunciation patterns, such as "on" and "or", which 
have short durations and similar mouth shapes, the model may 
make mistakes, but such mistakes can have a chance to be corrected 
by grammar-based error correction mentioned in Sec. 3.4.2. 

5.3 Ablation Study 
5.3.1 Impact of Optimization Strategies. In the first ablation study, 
we assess the impact of optimization strategies on audio quality 
using FMCW signals as carriers, and the study compares three 
configurations as shown in Fig. 11. "w/o Opt" refers to the baseline 
scenario where no optimization is applied. Here, we use a linear 
sawtooth waveform as the FMCW signal, with a chirp length of 
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Figure 11: Ablation Study 
1: impact of optimization 
strategies on audio quality. 
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Figure 12: Ablation Study 2: 
impact of blind source sepa-
ration on recognition. 

0.1 seconds and a bandwidth of 4 kHz. The results show that this 
configuration provides relatively low PESQ scores in all user cases, 
with the worst case being a PESQ of 1.87 for 4 users, which is in-
sufficient to support multiple users. "w/ C Opt" is a configuration 
that optimizes the carrier signal through an enumeration search. As 
mentioned in Sec. A.2, we tried various types of FMCW waveforms, 
different bandwidths, and chirp lengths. We eventually selected a 
linear triangular waveform with a chirp length of 0.25 seconds and 
a bandwidth of 2 kHz. This configuration ensures both audibility 
and good perceptual performance (as a narrower bandwidth would 
increase the ambiguity of cross-correlation). Compared to the base-
line, this optimization improves PESQ by about 0.4 in all user cases. 
"w/ C&A Opt" is a setting that further addresses non-linear distor-
tion and reduces audio interference caused by time-varying FMCW 
signals. PESQ in this configuration improves further by 0.2, indi-
cating that optimizing both the carrier and audio can significantly 
improve audio quality. The streaming processing of the optimiza-

tion has almost no impact on system latency, as the optimizations 
take only 0.04 seconds to process a 5-second audio file. 

Regarding user experience and system impact, the FMCW signal 
parameters we provide allow users to achieve an auditory expe-
rience almost identical to that of a standard speaker while main-

taining high recognition accuracy. If the FMCW signal uses a nar-
rower bandwidth or a longer chirp duration, the FMCW becomes 
smoother, further enhancing the user’s auditory experience. How-
ever, this also increases the ambiguity in the cross-correlation pro-
cess, decreasing recognition accuracy. Therefore, using the FMCW 
signal optimization results we provide to balance auditory experi-
ence and recognition accuracy is recommended. 

5.3.2 Impact of Blind Source Separation. In the ablation study 2, we 
investigate the impact of blind source separation (BSS) on recogni-
tion accuracy and evaluate the WER and SER for different numbers 
of users. All evaluated here are within-user, as shown in Fig. 12. 
We compare 2 configurations: w/o B: without BSS, w/ B: with BSS. 
When there are multiple users, the WER is generally lower when 
BSS is enabled. For example, for 2 users, WER-w/ B is about 5.69%, 
while WER-w/o B is about 5.46%. This trend continues as the num-

ber of users increases. In the case of 4 users, WER-w/o B increases 
significantly to about 16.88%, while WER-w/ B remains at 8.94%. 
Similarly, SER is lower when BSS is applied. For example, SER-w/ 
B is lower than SER-w/o B at all numbers of users. In the case of 4 
users, SER-w/o B rises sharply to 42.83%, indicating a significant 



CHI ’25, April 26–May 01, 2025, Yokohama, Japan Zhou et al. 

Figure 13: Visual input: using 
the camera on the phone for 
silent speech recognition. 

Figure 14: Phone Speaker 
& Microphone: using the 
speaker and microphone of 
the phone for silent speech 
recognition. 

drop in sequence recognition without BSS, where the model is es-
sentially unable to perform silent speech recognition, while SER-w/ 
B remains below 20%. 

BSS can significantly improve the accuracy of silent speech recog-
nition in environments with many users. However, in a single-user 
scenario, it has no impact on accuracy. Our system is designed 
to serve multiple users, so BSS enables the system to accurately 
recognize speech even when many users are interacting simultane-

ously. This prevents users from having to repeat their silent speech 
multiple times, thus enhancing convenience. Additionally, the BSS 
algorithm operates quickly, at the millisecond level, and performs 
well on systems with average computing power. 

5.4 Comparative Study 
5.4.1 Comparison of Different Machine Learning Models. In this 
comparative study, we analyzed the performance of various mod-

els in terms of WER and SER. Tab. 3 shows the results of five 
different models: LSTM [76], GRU [68], DS-CNN [103], Attention 
ResNet [38], and SilentMatch. It can be found that SilentMatch has 
the best performance, with the lowest WER of 6.52% and the lowest 
SER of 12.81%. SilentMatch outperformed all other models, indicat-
ing that its architecture is very effective in minimizing word and 
sentence errors. The reason is that SilentMatch uses a scalable one-
dimensional time channel separable convolutional neural network 
designed for word recognition. It is robust to background noise and 
has a small number of parameters, making it compact in devices 
with limited computing resources. 

5.4.2 Comparison of Different Silent Speech Recognition Schemes. 
We compared the silent speech recognition capability of M2

Silent 
with methods leveraging visual input [75] and traditional mobile 
speaker-microphone setups [98]. For the visual input (Fig. 13), we 
used the rear camera of an iPhone 15 Pro Max to record the speaker 
at a distance of 1 − 2 meters. Using facial landmark detection al-
gorithm [36] provided by Dlib [40], we identified the facial key 
points of the speaker, cropped the mouth region, and employed 
an end-to-end network [75] for recognition. In the phone speaker 
and microphone setup (Fig. 14), we utilized the bottom speaker of 

a Redmi 10X to emit a multi-frequency continuous wave signal 
ranging from 18𝑘𝐻 𝑧 to 22𝑘𝐻𝑧. The speaker brought their mouth 
close to the bottom of the phone to produce silent speech. The 
microphone captured the signal, extracting its phase and amplitude, 
which was then processed using a hierarchical convolutional neu-
ral network [98] for recognition. When identifying sequences, we 
employed the sliding window method. 

We collected data from 5 participants under both schemes, with 
an additional 3 participants as unseen users. The data collection pro-
tocol followed that of M2

Silent. As shown in Tab. 4, we compared 
WER and SER, averaged across within-user and cross-user scenar-
ios. The results indicate that M2

Silent delivers comparable perfor-
mance to the mobile speaker-microphone-based method, demon-

strating reasonable accuracy in silent speech recognition. However, 
its performance lags behind the visual input-based method, which 
directly captures lip movements for a more intuitive representation. 
Nevertheless, considering that users are more tolerant of errors in 
silent speech recognition tasks [59], and accounting for the visual 
method’s sensitivity to environmental lighting and privacy con-
cerns, the recognition capability of M2

Silent is deemed acceptable. 

5.5 Sensitivity Study 
In the sensitivity study, the 20 initial participants and 10 unseen 
participants from Sec. 4.2 were involved, and we additionally invited 
10 more unseen participants, consisting of 7 males and 3 females, 
aged 23 − 54 years, with an average age of 32.3 years. The study 
reveals how various factors impact the accuracy of the system’s 
silent speech recognition and audio quality. 

5.5.1 Impact of Angles. We evaluated the impact on audio and 
silent speech recognition when users stand at different angles. Us-
ing a protractor, we measured the angle 2 range around M Silent 
and asked users to stand approximately 1.5 meters away at different 
angles. As shown in Fig. 15(a), as the angle increases from 0◦ 

to 
80

◦ 
, WER increases slightly, while SER rises more significantly, 

especially at larger angles. This is due to the directional speaker’s 
volume attenuation at wider angles during beamforming, which 
weakens the sensing signal and reduces the signal-to-noise ratio. 
PESQ drops from 2.95 to 2.53, indicating this attenuation in per-
ceived audio. However, PESQ scores above 2.5 still allow users to 
hear clearly, and extreme user positioning is rare, so users can be 
reminded to adjust their position if needed. 

Users experience effective bidirectional interaction within ±60◦ 

from M2
Silent. While full-directional interaction is not supported, 

it is adequate for most user interactions, as users generally engage 
within a ±30◦ 

range in front of the speaker [23]. 

5.5.2 Impact of Distance. We evaluated the effect of user distance 
from M2

Silent. Using a tape measure, we marked different dis-
tances along a straight line opposite M2

Silent and asked users to 
stand at these marks while performing silent speech. As shown in 
Fig. 15(b), as the distance increases from 0.5𝑚 to 2.5𝑚, both WER 
and SER increase, indicating a decline in speech recognition accu-
racy with distance. This effect is noticeable beyond 2𝑚, as ultrasonic 
waves attenuate rapidly, weakening the reflected sensing signal. 
PESQ also decreases with increasing distance, from around 3.0 at 
0.5𝑚 to about 2.0 at 2.5𝑚, reflecting a decline in audio quality. 
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Table 3: Performance comparison with 
different models. 

Model WER SER 

LSTM 10.55% 23.33% 
GRU 9.69% 21.65% 

DS-CNN 9.32% 21.41% 
Attention ResNet 7.33% 15.16% 

SilentMatch 6.52% 12.81% 

Table 4: Performance comparison with different silent speech recognition 
schemes. 

Scheme WER SER 
Long 

Distance 
Privacy Dark 

Visual Input 4.12% 8.36% ✔ ✘ ✘

Phone 
Speaker & Microphone 

8.26% 17.58% ✘ ✔ ✔

M
2
Silent 6.92% 13.34% ✔ ✔ ✔
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(a) Impact of Angles. 
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(b) Impact of Distance. 
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(c) Impact of Sequence Length. 
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(d) Impact of Speaking Speed. 
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(e) Impact of Postures. 
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(f) Impact of Environments. 

Figure 15: Sensitivity Analysis. 
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Figure 16: System Usability 
Scale (SUS) results from user 
evaluation. This figure shows the 
participants’ responses to different 
metrics, including ease of use, inte-
gration, confidence, and complexity 
of M2

Silent. 

Users within 2𝑚 of the device can enjoy a good interaction 
experience, with PESQ around 2.5 and WER around 9.5%. This 
result aligns with the optimal viewing distance in many scenarios, 
such as viewing artworks in a museum (1.49𝑚 −2.12𝑚 [12]) and the 
distance between an interactive interface and a car seat (generally 
within 0.7𝑚 [57]). 

5.5.3 Impact of Sequence Length. Longer sequences lead to an in-
crease in SER. Fig. 15(c) shows that SER rises sharply when the 
sequence reaches 12 words. A possible method to reduce SER is in-
troducing a transformer model, which would significantly increase 
the required training data. However, WER remains relatively stable 
across different sequence lengths. PESQ remains unchanged, but 
recognition performance declines as sequences become longer. 

Most voice commands are short, typically within 8 words [19], 
which suffices for users to say a few keywords for a command. In 
these cases, 2 M Silent can complete the recognition with an average 
performance of 5.62% WER and 22.81% SER, which is in line with 
user expectations, because most speech recognition systems also 
process short commands individually [48, 88]. 

5.5.4 Impact of Speaking Speed. As shown in Fig. 15(d), changes 
in speaking speed (measured in seconds per word) have little effect 
on WER and SER, with both remaining usable at different speeds. 

However, slowing down the speaking speed slightly reduces WER 
and SER, as this produces more pronounced facial movements. 

The general speaking speed is approximately 0.3 − 1 seconds per 
word [25]. At this speaking speed, M2

Silent can maintain a silent 
speech recognition performance of 6.36% WER and 13.02% SER, so 
users can comfortably use M2

Silent at a normal speaking pace. 

5.5.5 Impact of Postures. Different postures, including facing for-
ward and tilting the head left, right, up, or down, result in significant 
variations in SER, as shown in Fig. 15(e). A downward posture leads 
to the highest error rate. WER also increases slightly with changes 
in posture. PESQ remains stable across all postures, as posture does 
not typically influence perceived audio. However, differences in ear 
volume due to posture might be introduced. 

In several cases, users may not be directly facing M2
Silent. 

For example, in a car, shaking caused by driving may occur, or 
in a museum, users may observe artwork without directly facing 
M

2
Silent, potentially resulting in slight facial deviations. However, 

these deviations are generally tolerable, with a WER of 8.48% and an 
SER of 17.92% in such cases. While in scenarios involving looking 
up or down, the WER reaches 13.67% and the SER 24.32%, users are 
unlikely to excessively tilt their heads up or down in most situations, 
as doing so would make it inconvenient to listen to 2 M Silent’s 
audio output, prompting them to adjust their posture naturally. 
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Table 5: User feedback and responses. 

Feedback Response 
1. "When silent speech is not properly recognized, the system should 
provide clearer feedback. Offering more immediate system feedback 
during use can help users understand mistakes and adjust their 
speech patterns accordingly, enhancing the user experience." 

Yes, if the user speaks too quickly, the system can issue targeted 
reminders to slow down. 

2. "Does prolonged exposure to ultrasonic waves negatively affect 
human hearing?" 

Our ultrasonic wave intensity meets international standards, and 
we can implement activation steps to reduce potential long-term 
impacts. 

3. "If I’m not directly facing the speaker, does the recognition 
accuracy decrease, and is there a way to avoid this?" 

We recommend users face the speaker when performing silent 
speech. We’ve also tested training the model with data collected 
from various postures, though this may introduce additional com-

plexity. 

4. "Can I move while speaking?" 

The tracking feature can be achieved by sensing motion through 
FMCW signals, but this may disrupt the system’s continuity. The 
system can be adapted to support movement, but users will have a 
better experience when stationary. 

5.5.6 Impact of Environments. As shown in Fig. 15(f), we tested 
three different environments: crowded indoor (C-I), uncrowded 
indoor (U-I), and uncrowded outdoor (U-O). WER and SER were the 
lowest in the uncrowded outdoor environment, while both error 
rates increased in more uncontrolled environments. PESQ remained 
relatively stable across different environments, with better audio 
quality in uncrowded outdoor settings. Overall, multipath effects 
indoors caused slight interference. 

Although in indoor environments and crowded spaces, the pres-
ence of multipath effects may slightly reduce the signal-to-noise 
ratio of received sensor signals, the impact is generally minimal. 
Compared to open spaces, under crowded conditions, the PESQ de-
creases by 0.04, the WER increases by 1.56%, and the SER increases 
by 3.32%. Since these environmental factors are usually static, the 
differential method mentioned in Sec. A.3 can mitigate their effects, 
ensuring that the user experience remains unaffected. This demon-

strates that M2
Silent is fully capable of operating effectively in 

potentially crowded spaces, such as cars with seats or exhibition 
halls with numerous displays. 

5.6 User Study 
5.6.1 System Usability Scale. This study used the System Usability 
Scale

2 (SUS) to evaluate user interactions with M Silent in different 
environments. SUS is a reliable tool that measures usability through 
a standardized set of 10 questions, each rated on a 5-point Likert 
scale. These questions assess the system’s ease of use, complexity, 
and user confidence. 

The main findings from the SUS analysis (Fig. 16) indicate that 
participants found the system suitable for frequent use (scoring 
3.96), with minimal impact from the ultrasonic waves. They con-
sidered the system easy to use (scoring 4.67) because there was 
no need for manual adjustments to the multi-directional speakers, 
as the beams automatically aligned with them. Participants felt 
the system was well-integrated (scoring 4.58), as the coordination 
between the speakers and microphones made two-way communi-

cation convenient. The system’s ease of learning received a score 
of 4.3, as directly speaking lip movements was more convenient 

than learning additional gestures. Participants also expressed con-
fidence in using the system (scoring 4.23), as it made open-voice 
interaction more comfortable in privacy-sensitive or quiet environ-
ments. For some issues, such as complexity, need for support, and 
inconsistency, user feedback and responses were summarized in 
Tab. 5. These insights highlight both the strengths of the system in 
terms of usability and areas for further improvement to enhance 
the user experience. 

5.6.2 Social Acceptance. We explored the social acceptance of 
M

2
Silent from the perspectives of key stakeholders, interview-

ing two car designers, one museum manager, one banker, and five 
general users. Among them, two car designers and three general 
users

2 experienced M Silent in person, while the others watched a 
remote online demonstration. Their ages ranged from 21 to 48. We 
gathered their comments on the system’s acceptability in Tab. 6. 

Two car 2 designers expressed that M Silent could be imple-

mented in vehicles. However, one car designer raised concerns 
about the added cost of incorporating an additional audio system 
in vehicles. The museum manager considered M2

Silent an ideal 
solution for enabling visitors to interact with exhibits without 
disturbing others. The system’s ability to silently inquire about 
directions or exhibit details aligns with the goal of maintaining 
a contemplative atmosphere. The 2 banker viewed M Silent as a 
breakthrough for safeguarding confidentiality, particularly when 
discussing contracts and transactions. Clients could silently convey 
sensitive information, but the banker expressed concerns about its 
potential to replace other methods. Younger users appreciated the 
ability to silently interact with devices in open spaces, finding it 
useful for activities like controlling music at parties or managing de-
vices without disturbing others. In contrast, older users emphasized 
the need for guidance to become familiar with the system. 

In summary, M2
Silent addresses concerns about equipment cost 

and ease of use. The device incurs minimal costs and can replace 
some existing speaker and microphone systems. Additionally, offer-
ing more detailed instructions, such as having directional speakers 
explain the silent speech function, could improve user-friendliness. 
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Table 6: Comments from several participants in social acceptance interviews. 

Participant Comments 

Car Designer 1 
"The automotive industry might accept the system because it enables quiet and personalized interactions within 
vehicles, aligning with modern design needs for undisturbed and serene in-car environments." 

Car Designer 2 "It might require reducing some existing speakers." 
Museum Manager "This system provides a futuristic and respectful solution for visitor engagement." 

Banker 
"While this method is intuitive, whether it can fully replace some button-based services requires further evaluation. 
It could, however, be more user-friendly for individuals with limited hand mobility." 

User 1 "It’s like having a secret voice assistant that no one else can hear." 
User 2 "If someone shows me how to use it, that would be wonderful." 

6 Discussion 

6.1 Use Cases 
Voice-based services in open scenarios, such as in-car navigation or 
museum audio guides, are irreplaceable. Research has shown that 
voice interaction is more convenient and intuitive than tapping on 
a screen [59]. In these multi-user scenarios, each user has unique 
content needs and interaction requests. While personalized audio 
services can also be delivered through personal devices like head-
phones, phones, or watches, these options are often rejected due 
to discomfort, aesthetic concerns, occupied hands, or high costs. 
Our system enables each user to hear different content without 
interference and contact-free interaction in multi-user settings. Ad-
ditionally, enhancing multi-directional speakers with silent speech 
recognition capabilities is valuable, allowing for bidirectional com-

munication without additional devices like cameras, as silent speech 
recognition has already been proven to be an efficient interaction 
method that most users can accept. 

The added value of our system lies in integrating multi-user 
silent speech recognition into multi-directional speakers, which can 
play a crucial role in shared environments where interactions may 
require 1) maintaining a quiet environment, 2) dealing with noisy 
surroundings, 3) avoiding user embarrassment, or 4) addressing 
privacy concerns. As shown in Fig. 17, M2

Silent can be applied 
in a variety of real-world scenarios: 
In exhibition rooms (Fig. 17(a)): M2

Silent enables visitors to 
silently inquire about detailed information regarding exhibits and 
receive responses through directional sound waves, without dis-
turbing others or compromising the quiet environment. Many 
museums worldwide have adopted noise standards [5, 18, 28, 80], 
prohibiting the use of loudspeakers and requiring visitors to refrain 
from speaking loudly [8, 29, 56]. However, in such settings, voice 
interaction can provide significant convenience, such as asking for 
details about exhibits or the location of items. Unfortunately, using 
traditional loudspeakers and human voice communication violates 
the silence policies, and very few visitors are willing to purchase or 
rent additional devices like audio guides [27, 35]. M2

Silent serves 
as an ideal solution to enhance visitor experiences in quiet, shared 
environments. Furthermore, many users are hesitant to use voice 
interaction in public due to embarrassment [9, 21, 50, 81], fearing 
that others might judge their requests as trivial or silly, like asking 
questions with obvious answers. In such scenarios, M2

Silent al-
lows users to interact silently, avoiding embarrassment and making 
voice interaction more acceptable to them. 

In-vehicle scenario (Fig. 17(b)): M2
Silent provides personalized 

audio interactions for car occupants while maintaining a non-
interfering and mutually comfortable environment, allowing the 
driver to focus on navigation sounds without being disturbed by 
music played by other passengers. This is crucial, as additional 
noise makes it harder for the driver to hear important sounds, such 
as alarms, horns, or the vehicle’s own alerts, thus increasing the 
likelihood of accidents [33, 70, 83]. Additionally, the acoustic inter-
face provided by M2

Silent is superior to touch-based interactions, 
preventing driver distraction. The quiet, non-interfering interaction 
that M2

Silent enables for each passenger allows some to rest com-

fortably, as in-car noise can create an uncomfortable environment, 
leading to stress or fatigue. Such noise has a negative impact on 
health, causing stress and sleep disorders [6, 51]. Moreover, the 
prevalence of ride-hailing services has increased privacy concerns 
in cars [1, 61, 104]. Drivers may not want to discuss the personal 
information in front of unfamiliar passengers. M2

Silent ensures 
the privacy of in-car interactions by enabling the driver to use silent 
speech and directional speakers, preventing other passengers from 
overhearing. This allows the driver to use hands-free calling with 
greater confidence. 
In transactions (Fig. 17(c)): M2

Silent can protect sensitive in-
formation and help ensure privacy in public spaces like banks. 
Numerous reports highlight that speaking sensitive information 
aloud (e.g., personal details) may lead to eavesdropping or expo-
sure of private addresses [15, 55, 78, 90]. It has been pointed out 
that discussing personal information of service providers in public 
settings can easily violate confidentiality agreements [72]. By using 
M

2
Silent, users can discreetly convey key details without being 

overheard, providing a high level of privacy in environments such 
as banks or private offices. For instance, in a bank, if the user is writ-
ing by hand or has a hand disability that makes button use difficult, 
M

2
Silent can replace button inputs to enter sensitive information. 

Another example is in the office, where a trader needing to com-

plete a transaction can use silent voice input of M2
Silent to enter 

the transaction amount, account details, and password. The staff 
can then replay the customer’s information and provide private 
feedback, such as confirming the accuracy of sensitive details. 
On the street (Fig. 17(d)): M2

Silent can direct important infor-
mation to pedestrians on the street and allow for interaction, even 
in noisy outdoor environments. In such settings, users may have 
to shout loudly for a voice system to recognize their requests, such 
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(a) In the exhibition room. (b) In the car. (c) In the transaction. (d) On the street. 

Figure 17: Real world use cases. 

as quickly changing a traffic light or asking for contact informa-

tion from an advertiser [60, 82, 96]. A company has placed self-
service machines on the street to allow people to customize items 
through voice commands [49], but such systems often struggle with 
recognition in noisy environments. Our system enables users to 
interact efficiently even in high-noise environments. For example, 
M

2
Silent can alert users needing traffic updates, such as warnings 

about oncoming vehicles, while other pedestrians can use silent 
voice commands to inquire about advertising details unaffected by 
surrounding traffic noise. In outdoor environments, using silent 
voice input also avoids the embarrassment of speaking loudly. 
A study has shown that although 90% of people have tried voice 
interaction, only 6% have used it in outdoor public spaces [3]. The 
introduction of M2

Silent will make street services more efficient 
and, compared to traditional voice services, allow more users to 
engage with them. 

6.2 Time Delay and Resource Cost 
The primary time delay in M2

Silent arises from audio output opti-
mization and silent speech recognition. Audio optimization takes 
0.032 seconds per second of audio, while silent speech recognition 
requires 0.074 seconds per second of input. This minimal delay 
ensures near-instantaneous, real-time responses, making the sys-
tem highly efficient for everyday use. Additionally, M2

Silent is 
lightweight (8𝑐𝑚 x 18𝑐𝑚) and affordable, priced at $352 USD. 

6.3 User Tracking 
In scenarios where the user is moving or in a car that vibrates a lot, 
M

2
Silent may need to track the user’s head position to interpret 

lip movements. This can be achieved through beam scanning, and 
because M2

Silent inherently emits FMCW signals, it can sense 
the user’s position. Potentially, the system can ask users whether 
they wish to initiate interaction in order to activate the device. By 
extending the FMCW signal to incorporate real-time user tracking, 
the system can dynamically adjust based on the user’s position and 
movements. 

6.4 Health Concerns 
Our research has received approval from the IRB. In this work, we 
implemented M2

Silent using transducers operating at a central 
frequency of 21𝑘𝐻 𝑧. The transmission power complies with FDA 
safety standards, which stipulate that the sound level for 21𝑘𝐻 𝑧 

should not exceed 80𝑑𝐵𝑆𝑃 𝐿 (decibels Sound Pressure Level) at a 
distance of 1𝑚. Note that directional speakers can use ultrasonic 
signals of different frequencies as carriers, and the safety standards 
vary depending on the frequency of the ultrasonic signal. For in-
stance, a frequency of 40𝑘𝐻 𝑧 can reach 120𝑑𝐵𝑆𝑃 𝐿, while lower fre-
quencies result in lower sound pressure levels. Although the sound 
pressure level of 21𝑘𝐻𝑧 is 80𝑑𝐵𝑆𝑃 𝐿 at 1𝑚, the audio demodulated 
from it can be clearly heard by the human ear (60𝑑 𝐵𝑆𝑃 𝐿 −65𝑑𝐵𝑆𝑃 𝐿). 
In future work, it is worth considering replacing the current setup 
with higher-frequency ultrasonic transducers to achieve greater 
sound wave emission energy and support longer distances. 

The current prototype is designed for use at moderate distances 
(this fully aligns with scenarios such as inside a car, in museums, 
etc.), ensuring that ultrasound exposure remains within safe limits. 
By adhering to FDA guidelines, we can ensure the system’s safety 
during prolonged use, even in proximity. If users have additional 
concerns about the system’s safety, we believe that adding an acti-
vation feature to M2

Silent, which would only generate ultrasound 
during interactions, is feasible. 

7 Limitations & Future Work 
In this paper, we propose a new prototype for achieving acoustic-
based multi-user, bidirectional silent interaction in open scenarios. 
However, there are still limitations when dealing with complex 
real-world environments. We discuss these limitations and envision 
future work to address them. 
Longer distance. The maximum distance supported by M2

Silent 
for silent voice interaction is around 2 meters. While this range 
is suitable for most scenarios, such as inside a car or in muse-

ums (where the optimal viewing distance for artwork is 1.49𝑚 − 
2.12𝑚 [12]), its performance may decrease for users standing at a 
greater distance. Future work could explore increasing the number 
of ultrasonic transducers to enhance transmission power and strate-
gically deploying distributed M2

Silent units in the environment 
to achieve broader coverage. 
More users. M2

Silent performs well when interacting with up to 
three users simultaneously. However, performance degrades when 
supporting four or more users. This is because additional users 
require M2

Silent to emit more beams. Since the beam has a certain 
width, this causes beam overlap and may cause confusion. Future 
work could focus on optimizing the spacing and arrangement of 
ultrasonic transducer arrays to produce more precise beams and 
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avoid overlap, enabling M2
Silent to support a greater number of 

users simultaneously. 
Occlusion. In crowded environments, such as indoor spaces with 
many pillars, occlusion may occur. These can impact both the user’s 
ability to hear sound and the accuracy of silent voice recognition. To 
address this problem, M2

Silent could leverage potential reflectors 
in the environment to bypass obstacles and communicate with users. 
Alternatively, the problem can be avoided by flexibly deploying 
multiple M2

Silent units within the space. 

8 Conclusion 
In conclusion, M2

Silent introduces a novel approach for enabling 
multi-user silent speech interaction in shared spaces. By combin-

ing multi-directional speakers, FMCW signal processing, and deep 
learning-based speech recognition, the system achieves high accu-
racy in recognizing silent speech while maintaining privacy and 
minimizing sound leakage. The system’s ability to simultaneously 
support multiple users in environments such as cars, museums, and 
outdoor settings highlights its versatility and practicality. The low 
latency and minimal resource cost further ensure a seamless user 
experience, making M2

Silent a valuable solution for real-world 
applications where privacy and silent interaction are essential. 
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A Appendix 

A.1 The implementation principle of 
multi-directional speakers 

A.1.1 Fundamental: parametric array. A parametric array is a non-
linear acoustic mechanism that generates audible sound by exploit-
ing air nonlinearity, where two or more ultrasonic waves interact in 
the air to produce a difference frequency within the audible range, 
as described by the KZK equation [16, 62]. The received signal 𝑟 (𝑡 ) 
from a transmitted signal 𝑠 (𝑡 ) can be expressed using a summation 
as 𝑟 (𝑡 ) = 

∞
𝑛=1 𝛼𝑛 𝑠

𝑛 (𝑡 ) where 𝛼𝑛 represents the attenuation coeffi-

cient for the 𝑛-th order nonlinear term. The second-order term 𝑠 2 (𝑡 ) 
is particularly important for reproducing sound from ultrasound, 
as higher-order terms are generally negligible. 

Assume that the modulated signal expressed as 𝑠 (𝑡 ) = 
(ℎ (𝑡 ) + 1) cos(2𝜋 𝑓𝑐 𝑡 ), where ℎ (𝑡 ) is the low-frequency audio signal 
and 𝑓𝑐 is the carrier frequency. When this signal propagates through 

ing is insensitive to the high-frequency term cos(4𝜋 𝑓𝑐 𝑡 ), applying 
a low-pass filter leaves the low-frequency component: 

𝑠
audible (𝑡 ) = 

𝛼2 

2 

 
ℎ 2 (𝑡 ) + 2ℎ (𝑡 ) + 1 

 
= 𝛼2h(t) + · · · 

where 𝛼2 is the second-order attenuation coefficient, thus enabling 
the parametric array to reproduce audible sound from ultrasound. 

A.1.2 Realization of the multi-directionality. The prototype of the 
multi-directional speaker (Fig. 18) used in our system is MuDiS [45], 

https://arxiv.org/abs/1804.03209
https://arxiv.org/abs/1804.03209
https://www.wikihow.com/Maintain-Confidentiality
https://www.wikihow.com/Maintain-Confidentiality
https://arxiv.org/abs/1711.07128
https://arxiv.org/abs/1711.07128
https://arxiv.org/abs/1711.07128
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which achieves multi-beamforming capability through spatial-
division multiplexing (SDM). This method is commonly used in 
communication systems to transmit multiple signals simultaneously 
over the same frequency band but in different spatial directions. 
We utilize SDM to create and steer multiple independent sound 
beams in different directions by manipulating the phase and ampli-

tude of the ultrasonic signals emitted from an array of transducers. 
Each transducer element in the phased array is carefully controlled 
to emit sound waves that constructively interfere in the desired 
directions while minimizing interference in others. The overall 
beamforming pattern 𝑊 (𝜙 ) for a direction 𝜙 is given by: 

𝑊 (𝜙 ) = 
𝑛∑︁ 

𝑖 =1 

𝑤𝑖 𝑒 
𝑗 2𝜋 𝑑 

𝜆 (𝑖 −1) sin 𝜙 

where 𝑤𝑖 represents the complex weight applied to each transducer 
element, 𝑑 is the spacing between elements, and 𝜆 is the wavelength 
of the emitted sound. By optimizing these weights for different 
target directions, we can project multiple beams, each carrying 
distinct audio content, to various spatially separated users. 

The system incorporates a meticulously designed acoustic meta-

surface that generates a controlled wavefront and optimizes trans-
ducer spacing. The purpose of the metasurface is to redirect and 
focus the ultrasound emitted by each transducer, thereby produc-
ing a more precise and directional wavefront. In conjunction with 
the metasurface design, the multidirectional loudspeaker utilizes 
beam optimization algorithms to further enhance the beam-shaping 
process. Moreover, the system integrates a nonlinear distortion 
reduction mechanism to mitigate distortions arising from the non-
linearities inherent in sound wave propagation. 

A.2 FMCW signal optimization 
Due to the time-varying characteristics of FMCW signals, we need 
to carefully optimize FMCW signals. By trying different shapes of 
FMCW signals and selecting different FMCW signal bandwidths 
and chirp lengths, we will find what kind of FMCW signal will least 
affect the sound quality. 

We compare the performance of FMCW signals with different 
settings for modulation. Specifically, the metric we use to evaluate 
the audio quality after air nonlinearity is PESQ. Fig. 19(a) shows the 
impact of different FMCW signal shapes, and it can be found that 
the linear triangular waveform results in the highest PESQ score, 
indicating better audio quality compared to other shapes like linear 
sawtooth or segmented linear. Fig. 19(b) shows the impact under 
different bandwidths, and it can be found that the wider the carrier 
bandwidth, the lower the PESQ. This is because the bandwidth of the 
ultrasonic speaker is limited, so the frequency response will decay 
rapidly within a certain range away from the center frequency, and 
the sound volume will decay at this time. Fig. 19(c) shows the impact 
under different chirp lengths. The smaller the chirp length, the 
lower the PESQ. This is because the frequency of the carrier changes 
too fast, and the vibration speed of the diaphragm of the ultrasonic 
array is limited, which will introduce additional noise. Considering 
that too narrow bandwidth and too large chirp length will affect the 
sensing performance, such as increasing the ambiguity of resolving 
with the reflected signal, we empirically select an FMCW signal with 
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Figure 19: (a) It shows how different waveform shapes affect 
the perceptual evaluation of speech quality (PESQ), and lin-
ear triangular is the best. (b) The PESQ score is plotted against 
different bandwidth values, demonstrating that wider band-
width leads to lower audio. (c) A plot showing the impact of 
different chirp lengths on PESQ, revealing that smaller chirp 
lengths degrade audio quality 

a shape of linear triangular, a bandwidth of 2𝑘𝐻 𝑧, a chirp length of 
0.25𝑠 , as the carrier signal, and use it for sensing simultaneously. 

A.3 Acoustic-based silent speech recognition 
principles 

During silent speech, where a person articulates words without 
producing any audible sound, the intricate and coordinated move-

ments of the face, lips, tongue, and even the jaw play a critical 
role in shaping speech sounds. These subtle articulatory gestures, 
though inaudible, can be effectively captured using FMCW signals. 
The transmitted signal interacts with the human body, and the re-
flected waves carry information about the movement and position 
of various anatomical features involved in speech production. 

To extract silent speech features from the reflected signal, 
M

2
Silent employs cross-correlation [86, 101]. In this context, the 

transmitted signal 𝑆 (𝑡 ) is cross-correlated with the received signal 
𝑅 (𝑡 ) to produce a correlation function 𝐶 (𝜏 ). This function given 
by: 

𝐶 (𝜏 ) = 
∫ 

𝑆 (𝑡 )𝑅 (𝑡 + 𝜏 ) 𝑑𝑡 

reveals peaks at specific values of 𝜏 , which correspond to the time 
delays of the reflected signals. These time delays are indicative of 
the distances to various reflecting surfaces around the lip, such 
as the tongue. The result of the cross-correlation process is an 
echo frame, which is essentially a snapshot of the reflected signal 
characteristics at a particular moment in time. Each echo frame’s 
element corresponds to the cross-correlation value for a specific 
time delay. For example, an echo frame might be represented as 
[𝐶 (𝜏1), 𝐶 (𝜏2), . . . , 𝐶 (𝜏𝑛 )] where each 𝐶 (𝜏𝑖 ) reflects the correlation 
at a different delay 𝜏𝑖 . Multiple echo frames captured over time 
form an echo profile, which is critical for tracking the dynamics of 
facial movement corresponding to silent speech. 

To reduce the impact of static noise or other consistent back-
ground reflections, we calculate a differential echo profile, which is 
obtained by taking the difference between consecutive echo frames: 
Echo Frame(𝑡 ) − Echo Frame(𝑡 − 1). By focusing on these differ-
ences, the system can more accurately detect subtle changes in 
muscle movements near the lips, which are key features of silent 
speech. 
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Figure 20: SilentMatch model architecture. The model uses 
depthwise separable convolutions, batch normalization, 
ReLU activation, and pointwise convolutions for silent word 
recognition. 

A.4 Detailed description of the blind source 
separation algorithm 

First, the mixed signals F𝑚𝑖𝑥 
are preprocessed by centering them 

(subtracting the mean) and whitening them to decorrelate the sig-
nals and standardize their variances. To achieve whitening, we 
transform the centered mixed signals as 

F𝑤ℎ𝑖𝑡 𝑒 = 𝑉 D−1/2 𝑉 ⊤F𝑚𝑖𝑥 , 

where 𝑉 and D come from the covariance matrix of the mixed 
signals. 

We then proceed with the core of FastICA, where a demixing 
matrix 𝑊 is determined iteratively to separate the sources by maxi-

mizing their non-Gaussianity. We start with a random weight vector 
w and update it using the rule 

w(𝑛𝑒 𝑤 ) = E 
 
F𝑤ℎ𝑖𝑡𝑒 𝑔(w ⊤F𝑤ℎ𝑖𝑡 𝑒 ) 

 
− E 

 
𝑔 ′ (w ⊤F𝑤ℎ𝑖𝑡 𝑒 ) 

 
w, 

where 𝑔 is a selected nonlinear function. After each update, we 
orthogonalize and normalize w(𝑛𝑒 𝑤 ) 

. This process is repeated for 
each source until all independent components are extracted, leading 
to 

F𝑟 𝑒𝑐𝑜 𝑣𝑒𝑟 𝑒𝑑 = 𝑊 F𝑤ℎ𝑖𝑡 𝑒 , 

which gives us the silent speech features for all users after segmen-

tation. 

A.5 Word recognition model architecture 
As shown in Fig. 20, SilentMatch employs 1D time-channel separa-
ble convolutional layers, which are particularly efficient in process-
ing temporal sequences like speech. These layers capture temporal 
patterns while reducing the model’s computational complexity. 
The model is composed of 4 blocks, where each block includes a 
1D convolution layer, batch normalization, ReLU activation, and 
a depthwise separable convolution. These layers help effectively 
learn the sequential dependencies in silent speech while maintain-

ing robustness to noise and variations. Furthermore, we reduced 
the stride in the convolutional layers to better capture fine-grained 
silent word features and reduced the kernel size to allow the model 
to capture more detailed silent speech features. For training, we 
utilize the cross-entropy loss function, and the model is optimized 
using SGD with momentum. 

SilentMatch outputs a prediction for a word based on the input 
features. If the confidence level for all possible word predictions 
is low, indicating uncertainty in the prediction, the model will 
output a blank instead of forcing an incorrect word prediction. This 
mechanism ensures that only confidently recognized words are 
considered, reducing errors in silent word recognition. 
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