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This paper presents MODepth, a multi-frame monocular depth estimation
system based on the controlled motion of an optical image stabilization (OIS)
module. By actively injecting acoustic signals, we induce regular transla-
tional movements of the OIS lens, resulting in controllable camera pose
changes and simplifying inter-frame pose estimation. Leveraging multi-
frame images captured under OIS-controlled lens movements, we design
a high-precision depth estimation network, MODNet, and introduce the
principal point offset estimation module and pose estimation modules to
fully exploit geometric information across frames. To validate the effective-
ness of our approach, we collect a new dataset MODdata with 1100 samples
in nearly 220 indoor scenarios and benchmark our model as an OIS-based
multi-frame depth estimation method, comparing it to ground truth obtained
from a depth sensor and other state-of-the-art monocular depth estimation
algorithms. Our method achieves competitive or superior performance com-
pared to fully supervised baselines, reaching an RMSE of 0.439, which outper-
forms all evaluated methods, demonstrating that self-supervised fine-tuning
with OIS-induced parallax is a viable alternative to ground-truth supervi-
sion. Code and dataset are available at: https://github.com/liangjindeamo-
yuer/MODEPTH
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Fig. 1. MODepth leverages OIS mechanism lens control for stable parallax

acquisition under static equipment conditions.
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1 Introduction

Monocular depth estimation has attracted considerable attention
due to its wide range of applications and low hardware requirements
(i.e., requiring only a single camera) [Bian et al. 2021a; Godard et al.
2019; Yu et al. 2020]. In particular, single-frame monocular depth
estimation aims to recover the 3D geometric structure from a single
RGB image [Zhao et al. 2023, 2020; Zhou et al. 2019]. However,
due to the absence of disparity or multi-view information, this
type of method typically relies on supervised training with dense
ground-truth (GT) depth maps captured by depth sensors [Bhat
et al. 2021; Ranftl et al. 2021]. Moreover, these approaches tend
to over-rely on the trained semantic priors, which severely limit
their generalization ability in novel or complex scenes and often
necessitate the collection of new datasets [Piccinelli et al. 2023].

Multi-framemonocular depth estimation leverages video sequences
or multiple consecutive images captured by a moving monocular
camera, and estimates depth by enforcing inter-frame 3D geomet-
ric consistency [Yao et al. 2018, 2019]. This approach effectively
alleviates the strong reliance on GT-based supervised learning in-
herent in single-frame methods. Accurate relative pose estimation
between frames is essential to guarantee the quality of geometric
supervision. In scenarios with constrained camera motion, such as
autonomous driving, pose estimation networks perform reliably:
large inter-frame translations and small rotations simplify the pose
estimation task and yield high accuracy, thereby improving depth
estimation performance [Bian et al. 2021b; Li et al. 2021]. In contrast,
hand-held camera scenarios introduce complex and unstable mo-
tion patterns, making pose prediction more challenging. Inaccurate
pose estimates in such cases degrade the effectiveness of geometric
supervision and adversely affect depth estimation accuracy [Jiang
et al. 2021; Yu et al. 2020; Zhao et al. 2023].
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This raises an important question: can we design multi-frame cap-
ture protocols for smartphones that induce regular and stable camera
motion patterns similar to those in autonomous driving scenarios?
Achieving such controlled camera poses would simplify the pose
estimation problem, enhance the effectiveness of geometric super-
vision in multi-frame monocular depth estimation, and ultimately
lead to higher-quality depth maps.

Inspired by the optical image stabilization (OIS)-based vision en-
hancement techniques [Lu et al. 2024; Pan et al. 2022b; Trippel et al.
2017], we explore leveraging the controlled motion of camera lenses
induced by OIS modules (in Fig. 1(a)) to generate regular camera
pose changes. In related works, researchers inject high-frequency
and inaudible acoustic signals to actively control the lens motion
in the OIS module, which means the acoustic signals can cause the
camera lens to shift in a controlled manner. As shown in Fig. 1(b),
this approach allows for capturing sequential images with regu-
lar motion patterns (i.e. controlled sub-pixel micro-parallax) while
keeping the camera body stationary. This micro-parallax disam-
biguates texture-only regions: in Fig. 1(c), the pseudo-texture inside
the display yields erroneous depth without OIS (right), whereas
with OIS (left) the induced optical flow is spatially coherent within
the screen area, leading the model to correctly infer a single-plane
depth. Building upon this principle, in this paper, we propose MOD-
epth, a novel multi-frame monocular depth estimation framework
and benchmark built upon the OIS-induced stereoscopic image ac-
quisition paradigm.

Our contributions span both dataset construction and model de-
sign. First, we construct a new dataset consisting of 1,100 OIS-driven
image pairs captured in diverse indoor environments. In each pair, a
reference frame is captured with the lens at rest, followed by a target
frame obtained while the lens is actively moved using inaudible
acoustic signals that actuate the OIS module. This results in stable
and repeatable parallax without requiring external camera motion.
Second, we introduce a two-stage learning framework tailored to
indoor depth estimation. Inspired by Croco [Weinzaepfel et al. 2022]
and other works utilizing synthetic data for pretraining, we first
develop a synthetic dataset that mimics the parallax characteristics
induced by OIS in real-world settings. Using this dataset, we perform
supervised pretraining to initialize a ViT-based depth estimation
backbone with strong inductive priors over indoor 3D structures.
Subsequently, we fine-tune the model via self-supervised learning
on real OIS image pairs. This phase incorporates a structure-aware
photometric consistency loss that leverages the known characteris-
tics of the OIS-induced lens motion, ensuring geometric coherence
during optimization. Through this hybrid strategy, our model learns
to produce dense and geometrically consistent depth maps even un-
der challenging indoor conditions. Our contributions are threefold:
• We propose MODepth, an OIS-based multi-frame monocular
depth estimation framework with a two-stage pipeline: su-
pervised pretraining on synthetic data and self-supervised
fine-tuning on real OIS image pairs.
• We build a real-world dataset of 1,100 indoor OIS image pairs
with ground-truth depth maps for accurate benchmarking.
• Our hybrid training strategy achieves an RMSE of 0.439, sur-
passing several fully supervised methods without requiring
ground-truth labels during fine-tuning.

Fig. 2. During the capture process of the mobile cameras, the OIS module

regulates lens motion based on built-in gyroscope readings.

• MODepth establishes a strong benchmark for high-precision
depth estimation under stationary camera settings enabled
by OIS-induced parallax.

2 Background and Related Work

2.1 Monocular Depth Estimation

Supervised Monocular Depth Estimation:With the advent of
deep learning, numerous supervised methods have been proposed to
improve estimation accuracy and generalization. Early CNN meth-
ods recovered resolution with FCRNs [Laina et al. 2016], followed
by two-stream, multi-scale fusion, and encoder–decoder designs
[Fang et al. 2020; Hu et al. 2019; Li et al. 2017]. To better model
depth continuity, DORN proposed SID [Fu et al. 2018] and VNL
introduced virtual-normal geometric supervision [Yin et al. 2019].
Recent advances include adaptive discretization (AdaBins [Bhat et al.
2021]) and ViT-based global context (DPT [Ranftl et al. 2021]).

Self-supervisedMonocularDepthEstimation: Self-supervised
depth typically minimizes photometric consistency across adja-
cent frames, augmented by masking/regularization. Key advances
include min-reprojection and auto-masking [Godard et al. 2019],
flow–depth coupling via sparse-to-dense optical flow [Zhou et al.
2019], and stronger geometry via patch correspondences [Yu et al.
2020], two-view triangulation and flow matching [Zhao et al. 2020],
and auto-rectification [Bian et al. 2021a]. Further refinements ex-
ploit depth factorization and residual pose [Ji et al. 2021], planar and
linear consistency [Jiang et al. 2021], Manhattan-world priors [Li
et al. 2021], and SfM priors without GT [Zhao et al. 2023].
Micro-baseline Depth Estimation: Micro-baseline depth ex-

ploits sub-pixel parallax; classic analyses quantify accuracy–baseline
trade-offs and ambiguity at tiny disparities [Joshi and Zitnick 2014].
Structured light improves correspondences but needs active hard-
ware and is illumination-sensitive [Saragadam et al. 2019]; lenslet
light-field cameras provide intrinsic micro-baselines with tailored
matching [Jeon et al. 2015]; handheld multi-frame methods leverage
natural tremor for refinement [Chugunov et al. 2022]. Yet accuracy
remains limited under weak texture and tiny disparities, and most
methods yield only relative depth. We instead induce controlled,
repeatable OIS micro-parallax to reduce pose ambiguity and recover
metric depth on commodity smartphones—without median scaling
or extra hardware.

2.2 OIS Control via Acoustic Injection

Optical Image Stabilization (OIS) is a common hardware module
integrated into modern smartphone and camera lenses to reduce
motion blur. As shown in Fig. 1(a), by physically shifting internal
lens elements to counteract camera shake, OIS provides stabilized
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Fig. 3. Difference in pixel coordinates of the same light source projected

onto two frames is linearly related to the distance caused by OIS-controlled

lens motion.

imaging without modifying the position of the image sensor. Tradi-
tionally, OIS is passively driven by internal gyroscopic feedback to
compensate for hand tremors in real time.
Recent research has revealed that the OIS mechanism can also

be actively controlled via external acoustic stimulation. Specifically,
studies such as OISSR and DoCam [Pan et al. 2022a,b] demonstrate
that injecting high-frequency sound signals can perturb the readings
of three-axis MEMS gyroscopes, which serve as the core sensors
driving OIS behavior. By emitting sine wave signals near the gy-
roscope’s resonance frequency—typically in the 18–30 kHz range,
which is inaudible to humans and considered biologically safe [Gao
et al. 2020]—the sensed angular velocity can be artificially manipu-
lated. As a result shown in Fig. 2, the OIS actuator interprets these
perturbed signals as motion and correspondingly drives the lens
to move in a stable and repeatable pattern, while the CMOS image
sensor and the device body remain static.
This phenomenon enables a novel form of internal lens actua-

tion without mechanical intervention or external calibration, effec-
tively producing structured intra-camera motion. Such controlled
oscillation introduces predictable and repeatable parallax between
captured frames. Since only the lens group moves while the sensor
remains fixed, this method yields optical parallax akin to that gen-
erated by real stereo or ego-motion setups—yet with much simpler
hardware constraints. Specifically, as depicted in Fig. 3, a pinhole
camera model is utilized to succinctly delineate the relationship
between lens shifts and pixel shifts, i.e., optical flow information.
When the lens under goes a displacement 𝛿ℎ in one dimension, tran-
sitioning from 𝑆1 to 𝑆2, the image of the light source also shifts from
pixel 𝑆 ′1 to pixel 𝑆 ′2 with a displacement of 𝛿𝑑 . Our work leverages
this principle to create OIS-driven image pairs for depth estima-
tion, forming a geometry-consistent, scalable supervision signal in
indoor environments.

3 System Design

3.1 SfOLM: Structure from OIS-controlled Lens Motion

In classical Structure-from-Motion (SfM) systems, depth supervision
is obtained from a set of temporally adjacent frames captured under
different camera poses. Given the camera intrinsic matrix 𝐾 , the
known relative pose 𝑇𝑟→𝑡 = [R|t] between reference frame 𝐼𝑟 and
target frame 𝐼𝑡 , and the depth 𝑍𝑖 𝑗 at pixel p𝑟𝑖 𝑗 in the reference frame,
its corresponding pixel p𝑡𝑖 𝑗 in the target frame can be computed as:

p𝑡𝑖 𝑗 ∼ 𝐾𝑇𝑟→𝑡𝑍𝑖 𝑗𝐾−1p𝑟𝑖 𝑗 (1)

Unlike conventional SfM methods that rely on large-scale camera
movements, SfOLM investigates whether the subtle motions in-
duced by internal lens shifts in optical image stabilization (OIS) can
serve as supervisory signals for monocular depth learning. Under
OIS control, where lens motion is internally actuated, the projection
geometry governed by camera intrinsics and extrinsics remains
valid. However, the relative transformations between frames are no
longer caused by global camera motion. Although the physical cam-
era remains stationary—i.e., [𝑅𝑟𝑒𝑎𝑙 |𝑡𝑟𝑒𝑎𝑙 ] = [I|®0], OIS introduces
micro-scale disturbances through slight displacements and rotations
of internal lens elements. These disturbances can be equivalently
modeled as a virtual camera motion with a small transformation
[𝑅𝑂𝐼𝑆 |𝑡𝑂𝐼𝑆 ]. Therefore, the final relative pose𝑇𝑟→𝑡 = [𝑅𝑂𝐼𝑆 |𝑡𝑂𝐼𝑆 ]. In
addition, lens-only motion induced by OIS also leads to shifts in the
principal point, effectively altering the camera intrinsics. If the refer-

ence frame adopts the original intrinsic matrix 𝐾𝑟 =

𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

 ,
then under the influence of OIS, the target frame is associated with

a perturbed intrinsic matrix 𝐾𝑡 =

𝑓𝑥 0 𝑐𝑥 + 𝛿𝑐𝑥
0 𝑓𝑦 𝑐𝑦 + 𝛿𝑐𝑦
0 0 1

 . Therefore,
under the structure from OIS-controlled lens motion (SfOLM), the
pixel reprojection relationship between frames becomes:

p𝑡𝑖 𝑗 ∼ 𝐾𝑡𝑇𝑟→𝑡𝑍𝑖 𝑗𝐾−1𝑟 p𝑟𝑖 𝑗 (2)

A view synthesis loss can be employed to supervise depth estimation
by enforcing photometric consistency between the reference frame
and the reprojected target frame:

L𝑣𝑠 = Ψ(𝐼𝑡 , 𝐼𝑟 ) (3)

𝐼𝑡 = 𝑝𝑟𝑜 𝑗 (𝐼𝑡 , 𝐾𝑟 , 𝑍𝑟 ,𝑇𝑟→𝑡 , 𝐾𝑡 ) (4)
where Ψ denotes the photometric reconstruction loss, formulated
as a weighted combination of pixel-wise 𝑙1 distance and structural
similarity (SSIM) [Wang et al. 2004], to jointly capture low-level
intensity differences and perceptual structural alignment:

Ψ(𝐼𝑡 , 𝐼𝑟 ) = (1 − 𝛼) | |𝐼𝑡 − 𝐼𝑡 | |1 +
𝛼

2
(1 − 𝑆𝑆𝐼𝑀 (𝐼𝑡 , 𝐼𝑡 )) (5)

where 𝛼 is a hyperparameter and defaults to 0.85. The function
𝑝𝑟𝑜 𝑗 (·) constructs a sampling grid based on the reference frame’s
camera intrinsics 𝐾𝑟 , the estimated depth map 𝑍𝑟 , the relative pose
transformation 𝑇𝑟→𝑡 , and the target frame’s intrinsics 𝐾𝑡 . This grid
is then used to perform differentiable resampling of the input im-
age. According to Eqs. 3 and 4, minimizing the view synthesis loss
requires not only accurate depth estimation, but also precise es-
timation of the camera intrinsics and the relative pose between
frames.

3.2 Intrinsic and Extrinsic Parameter Variability Under

SfOLM

In the working principle of optical image stabilization (OIS) [Car-
dani 2006], the lens is physically shifted within a limited range
to compensate for unintended hand tremors or device vibrations.
Due to mechanical constraints and design tolerances, the lens dis-
placement is inherently bounded—usually within ±0.5 to ±1 mm in
consumer-grade camera modules.
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Fig. 4. Analysis of camera pose changes under OIS-controlled motion.

As described in Section 2.2, injecting a cosine acoustic signal
perturbs the Inertial Measurement Unit (IMU) module and induces
controlled, predictable lens motion via the OIS actuator. Relative to
the static reference frame, this motion results in limited and stable
perturbations to the camera’s intrinsic and extrinsic parameters.

To empirically validate the range of intrinsic and extrinsic parame-
ter variations induced byOIS, we conducted a controlled preliminary
experiment using a smartphone camera and a standard checkerboard
calibration target. The physical distance 𝑑 between the camera and
the checkerboard was pre-measured and fixed throughout the exper-
iment. We first captured a reference image of the calibration board
with the camera held stationary, ensuring that no OIS actuation was
present. Next, we activated the smartphone’s internal speaker and
injected a sinusoidal acoustic signal, which coupled with the IMU
module and triggered periodic OIS lens motion. While this induced
regular micro-movements of the internal lens group, the camera
body remained physically static. During this period, we continu-
ously captured 1000 frames under OIS actuation, which served as
the target frames for our analysis.

For both the reference frame and each of the 1000 target frames,
we first detect the 2D corner positions of the calibration board
using a standard checkerboard detection algorithm. LetC𝑟𝑒 𝑓 andC𝑡 𝑗
denote the detected corner sets in the reference frame and the 𝑗-th
target frame, respectively, where each C = {𝑝𝑖 = (𝑥𝑖 , 𝑦𝑖 ) |𝑖 ∈ [1, 𝑁 ]}
contains 𝑁 ordered 2D image coordinates of checkerboard corners.
Given the detected 2D checkerboard corners C𝑟𝑒 𝑓 and C𝑡 𝑗 , and

the known depth 𝑑 at each corner location, we formulate an opti-
mization framework based on the proposed SfOLM formulation to
estimate the camera intrinsic matrix K𝑡 𝑗 and extrinsic pose [R𝑡 𝑗 |t𝑡 𝑗 ]
for each target frame:

𝑎𝑟𝑔𝑚𝑖𝑛
𝐾𝑡 𝑗 ,𝑇𝑟𝑒𝑓→𝑡 𝑗

𝑁∑︁
𝑖=0
| |𝑝𝑖

𝑟𝑒 𝑓
− 𝜋 (𝐾𝑡 𝑗𝑇𝑟𝑒 𝑓→𝑡 𝑗𝑑𝐾−1𝑟𝑒 𝑓 𝑝

𝑖
𝑡 𝑗
) | |22 (6)

where 𝐾𝑡 𝑗 =


𝑓𝑥 0 𝑐𝑥 + 𝛿𝑐𝑥𝑡 𝑗
0 𝑓𝑦 𝑐𝑦 + 𝛿𝑐𝑦𝑡 𝑗
0 0 1

 , 𝐾𝑟𝑒 𝑓 =


𝑓𝑥 0 𝑐𝑥
0 𝑓𝑦 𝑐𝑦
0 0 1

 and

𝜋 (·) denotes the standard perspective projection: 𝜋 ( [𝑥,𝑦, 𝑧]𝑇 ) =
[𝑥/𝑧,𝑦/𝑧]𝑇 . Moreover, (𝑓𝑥 , 𝑓𝑦) denote the focal lengths, and (𝑐𝑥 , 𝑐𝑦)
the nominal principal point coordinates which can all be obtained
through standard camera calibration procedures using the checker-
board pattern. And the terms 𝛿𝑐𝑥𝑡 𝑗 and 𝛿𝑐

𝑦

𝑡 𝑗
represent deviations of

the principal point caused by dynamic lens shifts under OIS actua-
tion.

Based on the physical constraints of OIS-controlled lens motion,
we impose prior bounds on both the intrinsic perturbations and
the extrinsic transformations during optimization. Given that the
Xiaomi Mi 11 Pro smartphone in our experiments features a primary
camera equipped with a CMOS sensor of size 1/1.12 inches and a
pixel pitch of 1.4𝜇𝑚, such lens displacements can result in principal
point shifts of up to 35–40 pixels. Accordingly, we constrain the
principal point deviations as follows:

𝛿𝑐𝑥𝑡 𝑗 , 𝛿𝑐
𝑦

𝑡 𝑗
∈ [−𝜖𝑝 , 𝜖𝑝 ],𝑤𝑖𝑡ℎ 𝜖𝑝 ≈ 40 𝑝𝑖𝑥𝑒𝑙𝑠 (7)

Similarly, considering the mechanical limits of the OIS actuator, we
constrain the rotational and translational components of the extrin-
sic transformation 𝑇𝑟𝑒 𝑓→𝑡 𝑗 = [R𝑡 𝑗 |t𝑡 𝑗 ] = [𝑅

𝑡 𝑗
𝑧 (𝜓 )𝑅

𝑡 𝑗
𝑦 (𝜃 )𝑅

𝑡 𝑗
𝑧 (𝜙) |t𝑡 𝑗 ]

(𝜓, 𝜃, 𝜙 are the rotation angles around 𝑍,𝑌, 𝑋 -axes) as follows:

−𝜖𝑟 ≤ 𝜓, 𝜃, 𝜙 ≤ 𝜖𝑟 𝑎𝑛𝑑 | |𝑡𝑡 𝑗 | | < 𝜖𝑡 , 𝑤𝑖𝑡ℎ 𝜖𝑟 ≈ 1◦, 𝜖𝑡 ≈ 2𝑐𝑚 (8)

These constraints serve as physically informed priors in our op-
timization framework, ensuring that the estimated intrinsic and
extrinsic parameters remain within the feasible operating range
dictated by the hardware characteristics of the Xiaomi Mi 11 Pro’s
OIS mechanism.
Subsequently, we obtain the optimized results as illustrated in

Fig. 4. It can be observed that the displacement of the lens principal
point exhibits a consistent and structured pattern. Meanwhile, the
relative pose matrices between target frames and reference frame
also demonstrate regularity and coherence, indicating that the lens
motion is highly modelable.

To enable accurate depth estimation, we jointly optimize camera
intrinsics, relative poses, and depth predictions using view synthesis
loss. Benefiting from the inherently consistent scale of our camera
setup, the predicted depths align well with real-world metrics, elim-
inating the need for median scaling commonly used in SfM-based
methods [Godard et al. 2019; Yu et al. 2020; Zhao et al. 2023].

3.3 Depth Estimation Network

In this section, we present the proposed depth estimation network,
MODNet. The network takes as input a pair of RGB images: a refer-
ence frame captured with the lens in a static state, and a target frame
captured under lens motion induced by OIS. The network outputs a
dense depth map corresponding to the reference frame, representing
the scene geometry from the reference viewpoint. We construct our
depth estimation network using the Croco-based [Weinzaepfel et al.
2022, 2023] framework, which is designed based on a ViT [Alexey
2020] (Vision Transformer) backbone. This framework consists of
an encoder, a decoder, and an output head.
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Fig. 5. Overview of the MODepth training framework.
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Fig. 6. Architecture of Our Depth Estimation Network MODNet.

Details of Encoder. We denote the shared-weight encoder as
E, which is based on a ViT[Alexey 2020]. It encodes both input
images 𝐼 ∈ R3×𝐻×𝑊 into patch-level features E(𝐼 ) ∈ R𝑁×𝐶𝑝 ( where
𝑁 = 𝐻

16 ×
𝑊
16 and𝐶𝑝 is set to 1024). Notably, we replace the standard

sinusoidal positional embedding with Rotary Positional Embedding
(RoPE)[Su et al. 2023] to inject positional information, which has
shown improved performance in modeling spatial relationships.

Details of Decoder. As illustrated in Figure 6, the attention mod-
ule in the decoder consists of three main components: multi-head
self-attention, multi-head cross-attention, and a multi-layer per-
ceptron (MLP). These components collaboratively enable effective
fusion of features from the two input frames.

Details of Depth estimation head module. As shown in Fig. 6,
our Head module takes the encoder output E(𝑃1) and the interme-
diate features (𝐷1, 𝐷2, 𝐷3) from selected attention-based blocks in
the decoder as inputs to generate the depth map for the reference
frame. These patch embedding features are first reconstructed into
image-like representations via a Patch-Reshape Convolutional Neu-
ral Network (PRCNN) module. Subsequently, they are fused using
an attention-based feature fusion block (AttentionFF, as shown in

Fig. 7). Finally, a lightweight head block produces the final dense
depth prediction. For more architectural details of the depth estima-
tion network, please refer to the Appendix.

3.4 Principal Point Offset Estimation Module

To explicitlymodel the principal point shifts induced byOIS-controlled
lens motion, we introduce a raft-based [Teed and Deng 2020] prin-
cipal point offset estimation Module that predicts the displacement
of the imaging center (𝛿𝑐𝑥𝑡 𝑗 , 𝛿𝑐

𝑦

𝑡 𝑗
) in the target frame 𝐼𝑡 𝑗 ∈ R3×𝐻×𝑊

relative to the reference frame 𝐼𝑟 ∈ R3×𝐻×𝑊 . The RAFT-based mod-
ule is first employed to predict the disparity of the target frame 𝐼𝑡 𝑗
relative to the reference frame 𝐼𝑟 . As shown in Fig. 8, a convolutional
encoder is used to extract dense features 𝐸 (𝐼 ) ∈ R𝐿× 𝐻

8 ×
𝑊
8 from

the input image. It consists of six blocks: two at 1
2 , two at 1

4 , and
two at 1

8 resolution. This hierarchical structure captures both local
details and global context for downstream depth estimation. Then,
a comprehensive correlation volume for the pairs is generated to
assess the visual similarity:

C(𝐸 (𝐼𝑟 ), 𝐸 (𝐼𝑡 𝑗 )) ∈ R
𝐻
8 ×

𝑊
8 ×

𝐻
8 ×

𝑊
8 (9)
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Fig. 9. Experiment setup: Xiaomi 11 Pro and

Azure Kinect v3.

𝐶ℎ𝑟 ,𝑤𝑟 ,ℎ𝑡 𝑗 ,𝑤𝑡 𝑗 =

𝐿∑︁
𝑙

𝐸 (𝐼𝑟 )𝑙,ℎ𝑟 ,𝑤𝑟 · 𝐸 (𝐼𝑡 𝑗 )𝑙,ℎ𝑡 𝑗 ,𝑤𝑡 𝑗 (10)

Next, a correction module iteratively updates the initial disparity
di𝑖𝑛𝑖𝑡 (initialized as zero) into a refined disparity di𝑣𝑖𝑠 by integrating
visual features C(𝐸 (𝐼𝑟 ), 𝐸 (𝐼𝑡 𝑗 )) and 𝐸 (𝐼𝑟 ) respectively. To remove
invalid disparity values near image boundaries, a mask𝑀 is applied
to obtain the masked disparity d̂i𝑣𝑖𝑠 =𝑀 ⊙ di𝑣𝑖𝑠 . We then compute
the average disparity 𝑚𝑒𝑎𝑛(d̂i𝑣𝑖𝑠 ) ∈ R2 along the 𝑥 and 𝑦 axes.
Finally, this mean displacement is passed through a ResNet-style
MLP block to regress the predicted principal point offset (𝛿𝑐𝑥𝑡 𝑗 , 𝛿𝑐

𝑦

𝑡 𝑗
).

3.5 Pose Estimation Network

We employ a pose estimation network to estimate the camera pose
between two input frames. Similar to works [Fan et al. 2023; Guo
et al. 2018; Kuznietsov et al. 2017; Zhao et al. 2023], our PoseNet
is based on the widely-used U-Net architecture [Ronneberger et al.
2015], which consists of an encoder-decoder network with skip
connections. This structure allows the network to capture both
high-level semantic information and low-level details, essential for
accurately estimating the relative pose between images. We use
ResNet18 [He et al. 2016] as the encoder, which consists of 11 million
parameters and has been pre-trained on ImageNet [Deng et al. 2009].

3.6 Pre-training on simulated datasets

As shown in Fig. 5, we adopt the self-supervised pretraining strategy
CroCov2 [Weinzaepfel et al. 2023] to initialize encoder and decoder.
Using the original Croco head [Weinzaepfel et al. 2022], the model
learns to reconstruct the reference frame from partially masked
inputs across both views, encouraging spatial correspondence and
3D-aware feature learning without explicit depth supervision.
To effectively pretrain the network under micro-parallax condi-

tions, we construct a synthetic dataset by simulating OIS-induced
lens motion as virtual extrinsic perturbations. By matching focal
length and FOV to our Xiaomi 11 Pro setup, we generate stereo-like
image pairs with realistic parallax. The simulator also provides clean,
high-resolution ground-truth depth maps, offering high-quality su-
pervision unavailable from noisy real-world sensors.

Once the image pairs and corresponding depth maps are obtained,
the network is trained using a weighted combination of three loss
terms: 1) Mean Squared Error (MSE) Loss ensures overall depth
accuracy by minimizing pixel-wise squared differences:

L𝑚𝑠𝑒 =
1
𝑁

𝑁∑︁
𝑖=1
(𝑍𝑖 − 𝑍𝑖 )2 (11)

Where 𝑁 = 𝐻 ×𝑊 is the total number of pixels. 2) Edge-Aware
Smoothness Loss encourages spatial smoothness while preserving
edges, modulated by image gradients:

L𝑠𝑚𝑜𝑜𝑡ℎ =
∑︁
𝑖, 𝑗

(
��𝜕𝑥𝑍𝑖, 𝑗 �� 𝑒− |𝜕𝑥 𝐼𝑖,𝑗 | + ��𝜕𝑦𝑍𝑖, 𝑗 �� 𝑒− |𝜕𝑦 𝐼𝑖,𝑗 | ) (12)

where 𝜕𝑥 and 𝜕𝑦 represent horizontal and vertical gradients of the
predicted depth map. 3) Gradient Loss enforces consistency between
predicted and ground truth depth gradients to preserve structural
details:

L𝑔𝑟𝑎𝑑 =
∑︁
𝑖, 𝑗

��𝜕𝑥𝑍𝑖, 𝑗 − 𝜕𝑥𝑍𝑖, 𝑗 �� + ��𝜕𝑦𝑍𝑖, 𝑗 − 𝜕𝑦𝑍𝑖, 𝑗 �� (13)

The final training objective is:

L𝑡𝑜𝑡𝑎𝑙 = 𝜆1L𝑚𝑠𝑒 + 𝜆2L𝑠𝑚𝑜𝑜𝑡ℎ + 𝜆3L𝑔𝑟𝑎𝑑 (14)

Where 𝜆1, 𝜆2 and 𝜆3 are weighting factors that balance the influence
of each loss component and are set to 1, 0.1, 0.1 by default.

3.7 Self-Supervised training on real datasets

Given the practical challenges of collecting large-scale paired RGB-D
data in real-world settings, we leverage the fact that capturing RGB
image pairs with micro-parallax using OIS-controlled lens motion
is significantly more feasible. Using a single handheld smartphone,
we can efficiently record large volumes of OIS-induced image pairs
without requiring specialized hardware or depth sensors. Therefore,
we adopt a self-supervised training framework based on SfOLM to
fine-tune the pretrained model on real-world OIS RGB data. This
approach enables the model to adapt to real image distributions
while still benefiting from the 3D geometric priors learned during
synthetic pretraining.
Given a reference frame 𝐼𝑟 and a target frame 𝐼𝑡 𝑗 , our model

predicts dense depth maps 𝑍𝑟 and 𝑍𝑡 𝑗 for both images using the
depth estimation network. Simultaneously, the principal point offset
module estimates the target frame’s offset (𝛿𝑐𝑥𝑡 𝑗 , 𝛿𝑐

𝑦

𝑡 𝑗
) relative to the

reference frame, and a pose estimation network regresses the rela-
tive camera pose 𝑇𝑟→𝑡 𝑗 between the two frames. These outputs are
jointly optimized (in Fig. 5) by minimizing a set of self-supervised
losses as described below. 1) Photometric Loss L𝑣𝑠 . As described in
Sec. 3.1, we implement the photometric reconstruction loss based
on Eq. 3, 4, and 5, which model the inter-frame reprojection under
OIS-controlled motion and visibility constraints. 2) Geometry Con-
sistency Loss 𝐿𝑔𝑐 . To further improve prediction accuracy, we impose
a geometric consistency constraint between the predicted depth
maps of the reference and target frames. Specifically, we require that
the depth predictions 𝑍𝑟 and 𝑍𝑡 𝑗 describe the same underlying 3D
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scene structure and minimize their mutual discrepancy. Using the
inter-frame projection relationship defined in Eq. 1, we first warp
the target frame’s depth map 𝑍𝑡 𝑗 into the reference view to obtain
a reconstructed depth 𝑍𝑡 𝑗 . The geometric consistency loss is then
defined as:

L𝑔𝑐 =
|𝑍𝑟 − 𝑍𝑡 𝑗 |
𝑍𝑟 + 𝑍𝑡 𝑗

(15)

3) Edge-Aware Smoothness Loss L𝑠𝑚𝑜𝑜𝑡ℎ . Consistent with the pre-
training stage, we also adopt the smoothness loss defined in Equa-
tion 12, which encourages spatial continuity in the predicted depth
while preserving edge details aligned with the RGB image structure.
4) Inverse Loss L𝑖𝑛 . While both the photometric loss and geometric
consistency loss project the target frame onto the reference frame,
the inverse loss L𝑖𝑛 = 𝜇1L

′
𝑔𝑐 + 𝜇2L

′
𝑣𝑠 measures the discrepancy by

projecting the reference frame onto the target frame (𝜇1 and 𝜇2 are
hyper-parameters that balance the loss.). This bidirectional formu-
lation enhances consistency and regularizes the depth prediction
across both views. Thus, the overall objective of our self-supervised
training framework is as follows:

L𝑎𝑙𝑙 = 𝜃1L𝑣𝑠 + 𝜃2L𝑔𝑐 + 𝜃3L𝑠𝑚𝑜𝑜𝑡ℎ + 𝜃4L𝑖𝑛 (16)

Where 𝜃1,𝜃2, 𝜃3, and 𝜃4 are weighting factors that balance the
influence of each loss component (set to 1.0, 0.02, 0.1, 0.1 by default).

4 Evalution

4.1 Implementation Details

We use a Xiaomi 11 Pro smartphone camera to capture RGB images,
while injecting an acoustic signal at approximately 20,150 Hz to
induce regular lens motion via its OIS module. The acoustically in-
duced motion follows a cosine-like periodic trajectory with a cycle
of ∼0.8 s that is reliably detectable by the IMU; the OIS leverages this
periodic cue to drive repeatable lens displacements. Image capture
is scheduled within a single cycle (< 0.8 s) to avoid motion incon-
sistency. To obtain ground-truth depth, we additionally employ a
Kinect v3 depth sensor to record aligned RGB-D data. Moreover,
we implement our network using the PyTorch [Paszke et al. 2019]
framework and train it using the AdamW [Loshchilov and Hutter
2017] optimizer for efficient and stable optimization. Additionally,
we set the input image and output disparity map size of the depth
estimation network to 480 × 352. And our model is trained on an
NVIDIA A800 GPU with 80 GB memory, and depth inference at ∼83
ms per frame.
4.2 Datasets and Metrics

Simulated Datasets. We construct Synthetic MODSim, a large-
scale 720p RGB–depth dataset consisting of an indoor subset from
Habitat [Savva et al. 2019] and an outdoor subset fromCARLA [Doso-
vitskiy et al. 2017]. For synthetic MODSim (indoor), a total of 81,600
image pairs are collected from 816 diverse indoor scenes drawn
from HM3D [Ramakrishnan et al. 2021], ScanNet [Dai et al. 2017],
Replica [Straub et al. 2019], and ReplicaCAD [Szot et al. 2021]. Each
pair consists of a reference frame and a target frame with aligned
RGB and depth. To induce controllable micro-parallax while pre-
serving photometric consistency, we synthetically perturb the two
camera poses of each pair as follows: translation t = (𝑡𝑥 , 𝑡𝑦, 𝑡𝑧) in
meters with 𝑡𝑥 ∼ U(−1𝑒 − 3, 1𝑒 − 3) and 𝑡𝑦, 𝑡𝑧 ∼ 0.5U(5𝑒 − 2, 2.5𝑒 −

Algorithm 1: Texture Complexity

Input: Image 𝐼 ∈R𝐻×𝑊 ×𝐶 , optional mask𝑀 ∈ {0, 1}𝐻×𝑊 ;
Gaussian 𝜎 ≥0; robust clipping percentile 𝛼

Output: Raw texture score 𝑠

if max(𝐼 ) > 1 then scale 𝐼 ← 𝐼/255;
if 𝐶 = 3 then convert to gray 𝑌 ← 0.299𝑅 + 0.587𝐺 + 0.114𝐵;
else 𝑌 ← single channel of 𝐼 ;
if 𝜎 > 0 then 𝑌 ← 𝐺𝜎 ∗ 𝑌 ;
Compute Sobel derivatives with reflect padding:;
𝐺𝑥 ← 𝐾𝑥 ∗ 𝑌, 𝐺𝑦 ← 𝐾𝑦 ∗ 𝑌 ;
Gradient magnitude: 𝐺 ←

√︃
𝐺2
𝑥 +𝐺2

𝑦 ;
if 𝑀 not given then 𝑀 ← 1𝐻×𝑊 ;
Robust per-image clipping threshold:
𝜏 ← 𝑄𝛼 ({𝐺 (𝑥,𝑦) | 𝑀 (𝑥,𝑦) = 1});
Clipped magnitude: 𝐺 (𝑥,𝑦) ← min{𝐺 (𝑥,𝑦), 𝜏};
Raw score (mean over valid pixels):

𝑠 ←
∑
𝑥,𝑦 𝐺 (𝑥,𝑦)𝑀 (𝑥,𝑦)∑

𝑥,𝑦 𝑀 (𝑥,𝑦)
return 𝑠

1) + 0.5U(−2.5𝑒 − 1,−5𝑒 − 2); in-plane rotation (about the optical
axis) 𝜃 in radians with 𝜃 ∼ U(−0.01, 0.01). For each scene, 100 pairs
are randomly sampled to ensure diversity. Meanwhile, the synthetic
MODSim (outdoor) is rendered in CARLA on multiple large-scale
3D outdoor assets using the same camera parameters. It contains
6,800 image pairs captured from 68 distinct scenes. Both subsets are
split into training, validation and test sets with an 8:1:1 ratio for
pretraining and evaluation.

Real-world Datasets. To construct our dataset, we use a Kinect
v3 depth sensor to capture high-quality RGB-D image pairs with
accurate depth ground truth. Specifically, as shown in Fig. 9, we
mount a Xiaomi 11 Pro smartphone and the Kinect v3 on a custom
rig with a fixed relative pose. We then perform extrinsic calibra-
tion between the two devices, allowing the depth maps obtained
from the Kinect to be projected onto the RGB frame of the smart-
phone. For each sample, we first record a reference frame using the
smartphone while the OIS module remains inactive, alongside the
corresponding RGB-D pair from the Kinect v3. The projected depth
map onto the reference frame serves as the ground truth. We then
activate the built-in speaker to emit a cosine signal at approximately
20,150 Hz, which triggers periodic lens motion via the OIS mod-
ule, and capture a target frame during this induced motion. This
completes one RGB image pair with motion-induced parallax and
its associated depth supervision. Due to the Kinect-v3’s effective
depth range (≤4.5 m), the current version of MODData primarily tar-
gets indoor scenes. Following the NYUv2 protocol, we collect 1,100
acoustically injected OIS image pairs across ∼220 distinct indoor
environments—including offices, laboratories, apartments, cluttered
desktops, plants, reflective displays, and corridors—for evaluating
depth-estimation performance.

Dataset Statistics. We provide comprehensive dataset statistics,
including the number and types of scenes, the total number of image
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Dataset Scenes Pairs Depth bins (%) Tex@5% Tex@50% Tex@95%

Synthetic MODSim (Indoor) 816 81.6k 27 / 50 / 15 / 4 / 3 0.001 0.012 0.024
Synthetic MODSim (Outdoor) 68 6.8k 3 / 5 / 3 / 19 / 70 0.011 0.020 0.026
Real MODData Indoor ∼220 1.1k 3 / 71 / 21 / 4 / 0 0.007 0.015 0.025

Table 1. Dataset statistics. Scene counts, total RGB image pairs, depth

distributions (per-pixel proportions over fixed ranges, %), and texture com-

plexity measured by normalized gradient-energy percentiles (Tex@5/50/95).

pairs, per-pixel depth distributions over fixed ranges (0–1 m / 1–3 m
/ 3–5 m / 5–10 m / 10+ m), and texture complexity measured by the
normalized gradient-energy (shown in Alg. 1) percentiles at the 5th,
50th, and 95th. As summarized in Tab. 1, more than 70% of indoor
pixels fall within 0–3 m, whereas roughly 70% of outdoor pixels lie
beyond 10 m. Despite this near–far contrast, the 95th-percentile
texture score is nearly identical across all splits (∼ 0.025), indicating
balanced range coverage without sacrificing cross-domain texture
consistency.
Metrics. Following [Fan et al. 2023; Wu et al. 2022; Zhao et al.

2023], we use standard metrics, including error-based metrics: Mean
Absolute Relative Error (Abs Rel), Mean Log10 Error (Log10), and
Root Mean Squared Error (RMSE). For accuracy-based metrics, we
compute the percentage of pixels 𝑚𝑎𝑥 ( 𝑍𝑝

𝑍𝑔
,
𝑍𝑔

𝑍𝑝
) = 𝛿 < 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ,

where 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 ∈ [1.251, 1.252, 1.253] and where 𝑍𝑝 and 𝑍𝑔 repre-
sent the predicted and ground truth depth map.

4.3 Ablation Studies

Cases Error Metric ↓ Accuracy Metric (%) ↑
Index Pretraining Losses Abs Rel ↓ Log10 ↓ RMSE ↓ 𝜹1 ↑ 𝜹2 ↑ 𝜹3 ↑
case (a) ✗ L𝑣𝑠 + L𝑠𝑚𝑜𝑜𝑡ℎ 0.247 0.102 0.788 61.1 84.2 93.5
case (b) ✗ (a) + L𝑔𝑐 0.232 0.098 0.784 59.8 87.1 95.9
case (c) ✗ (b) + L𝑖𝑛 0.224 0.094 0.721 64.5 88.4 96.5
case (d) ✓ None 0.215 0.085 0.640 68.5 88.7 96.3
case (e) ✓ L𝑣𝑠 + L𝑠𝑚𝑜𝑜𝑡ℎ 0.183 0.068 0.523 77.4 92.8 97.9
case (f) ✓ (e) + L𝑔𝑐 0.178 0.069 0.458 76.3 93.3 98.1
case (g) ✓ (f) + L𝑖𝑛 0.165 0.065 0.439 79.4 93.2 98.5

Table 2. Ablation studies of MODepth on MODdata. Pretraining and Losses
denote the pretraining setting and the loss functions used in each case.

We ablate MODepth across seven configurations (a–g). For each
case, the pretraining regime and loss composition are given directly
in the Pretraining and Losses columns of Tab. 2. Note that case (d)
uses supervised pretraining only (no self-supervised fine-tuning)
and case (g) is our final model.

As shown in Tab. 2, our ablation study reveals several key insights.
First, comparing cases (a) to (c), we observe that progressively adding
geometric consistency loss and reverse loss improves both accuracy
and error metrics, with the reverse projection loss in (c) reducing
Abs Rel from 0.247 to 0.224 and increasing 𝛿1 from 61.1% to 64.5%,
highlighting its complementary effect in enforcing bidirectional
consistency. Case (d), which only uses supervised pretraining with-
out self-supervised fine-tuning, achieves better performance than
(a–c), demonstrating the importance of strong inductive priors from
synthetic data. However, the best results are obtained in cases (e–g),
where self-supervised fine-tuning is applied on top of supervised
pretraining. Notably, case (g), which integrates photometric, geo-
metric, and reverse losses, achieves the lowest error (Abs Rel = 0.165)
and the highest accuracy (𝛿1 = 79.4%), confirming the efficacy of our
full pipeline. This progression demonstrates that the combination of
synthetic pretraining and comprehensive self-supervised objectives
is crucial for high-quality indoor depth estimation.

Training Method AbsRel↓ Log10↓ RMSE↓ 𝜹1 ↑ 𝜹2 ↑ 𝜹3 ↑
Supervised AdaBins 0.216 0.096 0.704 61.9 87.5 96.5
Supervised DPT 0.175 0.074 0.516 75.3 93.7 96.8
Supervised idisc 0.151 0.065 0.479 76.8 95.6 98.9
Supervised UniDepth 0.155 0.063 0.445 77.2 96.7 99.5
Supervised+MS DepthAnything 0.211 0.109 0.628 65.5 83.9 90.6
Self-sup.+MS MonoDepth 0.300 0.120 1.019 51.6 80.9 92.5
Self-sup.+MS IndoorDepth 0.209 0.091 0.723 64.6 88.6 96.6
Self-sup.+MS GasMono 0.233 0.099 0.785 59.9 87.1 95.9
Sup(Syn)+Self-sup.(Real) MODepth (w/o parallax) 0.222 0.083 0.659 70.3 89.1 96.7
Sup(Syn)+Self-sup.(Real) MODepth (Ours) 0.165 0.065 0.439 79.4 93.2 98.5

Table 3. Comparison with state-of-the-art monocular depth estima-
tors.MS: median scaling to convert relative-depth predictions to absolute

scale. Best values in bold. 𝛿𝑖 are in %.

4.4 Comprehensive Comparison

We compare MODepth with several state-of-the-art supervised
and self-supervised monocular depth estimation models, including
AdaBins [Bhat et al. 2021], DPT [Ranftl et al. 2021], idisc [Piccinelli
et al. 2023], Unidepth [Piccinelli et al. 2024], DepthAnything [Yang
et al. 2024], MonoDepth [Godard et al. 2019], IndoorDepth [Fan et al.
2023] and Gasmono [Zhao et al. 2023]. Because DepthAnything
outputs relative depth, we convert its predictions to an absolute
scale using median scaling (MS) strategy; for fairness, we apply
the same MS strategy to other self-supervised monocular methods.
Meanwhile, all baseline models are fine-tuned on our OIS-based
dataset using their official pre-trained weights and default settings.
As shown in Tab. 3 and Fig. 10, MODepth achieves highly com-

petitive performance. It reports the lowest RMSE (0.439) and the
highest 𝛿1 accuracy (79.4%), demonstrating its superiority in estimat-
ing geometrically consistent and high-precision depth, particularly
in near-range indoor scenes. While idisc achieves slightly better Abs
Rel (0.151 vs. 0.165), our method performs better in key accuracy
metrics and produces more stable overall results. Remarkably, MOD-
epth achieves these results without relying on any ground-truth
depth supervision during fine-tuning. Instead, it benefits from a
hybrid training strategy that combines synthetic-data-based super-
vised pretraining with self-supervised fine-tuning on OIS-induced
image pairs. This shows that our approach not only matches but in
some cases outperforms fully supervised methods, highlighting the
effectiveness of hardware-induced parallax as a natural and scalable
supervisory signal for depth estimation in indoor environments.

4.5 Impact of Micro-Parallax

We further demonstrate the benefit of OIS-induced micro-parallax
via an ablation that replaces the target frame with the reference
frame (removing parallax). As reported in Tab. 3, the RMSE de-
grades from 0.439 (MODepth, with parallax) to 0.659 (MODepth-
w/o-parallax). Despite the model’s ability to estimate depth from a
single image, multi-frame inference with hardware-induced parallax
is clearly superior.

4.6 Impact of Self-Supervision Framework

We evaluate the impact of our self-supervised framework on the
final depth estimation accuracy by comparing it with alternative
self-supervision strategies. To ensure fairness, all methods are pre-
trained on the same synthetic dataset using supervised learning,
followed by fine-tuning on real-world OIS RGB data using their re-
spective self-supervised pipelines. As shown in Tab. 4, methods such
as MonoDepth [Godard et al. 2019], IndoorDepth [Fan et al. 2023],
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Ground Truth OursRGB Image AdaBins DPT idisc

Fig. 10. Qualitative Comparison of our MODepth to other SOTA supervised monocular depth estimation methods on MODdata.

and GASMono [Zhao et al. 2023]—which are primarily designed
around structure-from-motion (SfM)-based modeling—achieve sig-
nificantly inferior results under our OIS-based setting. These ap-
proaches typically assume large ego-motion or stereo baselines,
which are not present in our micro-parallax data. In contrast, our
method leverages the SfOLM framework tailored to OIS-induced
image pairs and achieves substantially better performance across all
metrics, including a notably low RMSE of 0.439 and high 𝛿1 accuracy
of 79.4%. These results demonstrate the importance of designing
self-supervision objectives aligned with the physical characteristics
of the data, and validate the effectiveness of our geometry-aware
training framework in micro-parallax scenarios.

4.7 Evaluation of Using Stereo Algorithms

We further evaluate the applicability of existing stereo matching al-
gorithms on our dataset, using RAFT-Stereo [Lipson et al. 2021] and

Methods
Error Metric ↓ Accuracy Metric (%) ↑

Abs Rel ↓ Log10 ↓ RMSE ↓ 𝛿1 ↑ 𝛿2 ↑ 𝛿3 ↑
MonoDepth [Godard et al. 2019] 0.609 0.193 1.611 14.1 60.1 84.7
IndoorDepth [Fan et al. 2023] 0.869 0.247 2.404 22.6 46.2 66.1
Gasmono [Zhao et al. 2023] 1.086 0.286 2.233 14.8 32.6 54.1
MODepth(Ours) 0.165 0.065 0.439 79.4 93.2 98.5

Table 4. Evaluation on MODdata of different self-supervised monocular

depth estimation methods.

Methods
Error Metric ↓ Accuracy Metric (%) ↑

Abs Rel ↓ Log10 ↓ RMSE ↓ 𝛿1 ↑ 𝛿2 ↑ 𝛿3 ↑
RAFT-stereo [Lipson et al. 2021] 1.004 0.213 1.777 42.6 65.5 77.8
LEAStereo [Cheng et al. 2020] 0.967 0.279 2.461 3.24 16.7 61.8
MODepth(Ours) 0.165 0.065 0.439 79.4 93.2 98.5

Table 5. Performance Comparison with Stereo Matching Methods on OIS

Image Pairs

LEAStereo [Cheng et al. 2020] as representative baselines. As shown
in Tab. 5, both models are applied to our OIS-induced image pairs
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Training Method AbsRel ↓ Log10 ↓ RMSE ↓ 𝜹1 ↑ 𝜹2 ↑ 𝜹3 ↑

Supervised AdaBins 0.269 0.104 0.719 66.4 82.7 90.1
Supervised DPT 0.180 0.076 0.467 75.0 92.3 97.1
Supervised idisc 0.085 0.035 0.378 94.4 98.9 99.5
Supervised UniDepth 0.069 0.029 0.339 95.6 98.9 99.5
Supervised+MS DepthAnything 0.258 0.133 0.644 60.0 77.7 86.5
Self-sup.+MS MonoDepth 0.298 0.130 0.762 54.4 78.9 89.1
Self-sup.+MS IndoorDepth 0.278 0.111 0.738 62.2 84.0 92.0
Self-sup.+MS Gasmono 0.279 0.113 0.706 58.2 84.1 93.1
Sup(Syn)+Self-sup.(Real) MODepth (Ours) 0.061 0.026 0.316 97.1 99.2 99.6

Table 6. Results on synthetic datasets MODSim.

Distance AbsRel ↓ SqRel ↓ RMSE ↓ LogRMSE ↓ Log10 ↓ 𝜹1 ↑ 𝜹2 ↑ 𝜹3 ↑

4m 0.180 0.274 0.70 0.209 0.085 74.6 93.4 98.5
6m 0.226 0.429 1.22 0.279 0.110 70.6 92.4 97.6
8m 0.256 0.522 1.56 0.253 0.129 68.2 98.5 99.4
10m 0.349 1.261 3.16 0.463 0.196 64.3 98.9 99.9

Table 7. Outdoor calibration-board evaluation.

Method AbsRel↓ Log10↓ RMSE↓ 𝜹1 ↑ 𝜹2 ↑ 𝜹3 ↑
MODepth (Tripod) 0.184 0.076 0.553 72.7 92.3 97.4
MODepth (Handheld) 0.189 0.076 0.574 72.4 92.2 97.0

Table 8. Tripod vs. handheld robustness on 10 indoor scenes.

without modification. Due to the absence of known baseline dis-
tances between the reference and target frames, we cannot directly
convert disparity to metric depth. Instead, we adopt the median
scaling strategy: disparity is inverted to approximate depth and
then scaled by the median ratio for evaluation. The results demon-
strate a significant performance gap between stereo methods and
our approach. This is primarily because lens-induced motion in OIS
not only alters the camera’s relative pose but also introduces small
but non-negligible changes to the intrinsic parameters—particularly
principal point shifts. These deviations violate the assumptions of
stereo algorithms, which typically rely on fixed intrinsics and recti-
fied epipolar geometry. As a result, existing stereo methods struggle
to produce reliable depth estimates in our setting, confirming that
they are not well-suited for OIS-induced micro-parallax data.

4.8 Evaluation on Synthetic Datasets

We additionally report quantitative results on synthetic datasets
MODSim. As summarized in Tab. 6, MODepth (trained with super-
vised pretraining on synthetic data and self-supervised fine-tuning
on real OIS pairs) achieves the best performance across all metrics,
outperforming strong supervised baselines such as UniDepth.

4.9 Outdoor Calibration-Board Evaluation.

To further verify real-world performance in outdoor settings, we cap-
tured images of a 96𝑐𝑚 × 54𝑐𝑚 checkerboard (block size 6𝑐𝑚 × 6𝑐𝑚)
placed at varying distances and evaluated depth accuracy. Due to
the limited board size, this evaluation targets distances up to ∼ 10𝑚.
As summarized in Tab. 7, our OIS-based framework remains reason-
ably effective outdoors—especially for objects within 10m—while
errors increase gradually with distance, as expected.

4.10 Handheld Robustness

We validated the MODepth’s performance under tripod and hand-
held settings across 10 real-world indoor scenes. The result in Tab. 8
shows that our method still achieves accurate depth estimation
under handheld settings. This is because hand-induced and OIS-
induced IMU changes are additive, and OIS compensates for all
motion based on IMU data, effectively offsetting minor hand shakes.

5 Discussion

5.1 Device robustness.

Our results indicate that the proposed OIS-induced micro-parallax
pipeline is not tied to a single handset and can be ported across
devices with minimal friction.Generalizability of Synthetic Data.
Empirically, measurements on multiple Xiaomi 11 Pro units show
consistent intrinsics (e.g., FOV, focal length) within the same model
family, enabling a single set of camera parameters to generalize well
across units. Beyond a specific model, our synthetic data pipeline
MODSim is fully parametric: it exposes FOV, focal length, and an
effective “sensor baseline” that controls the magnitude of micro-
parallax. This allows us to simulate the target hardware, generate
training pairs (MODData) that match its geometry, and then fine-
tune MODepth with a small amount of real OIS pairs from the tar-
get device. Generalizability from a System Design Perspective.
Prior system studies (e.g., DoCam [Pan et al. 2022a], WALNUT [Trip-
pel et al. 2017]) report that acoustic injection can reliably excite OIS
control loops and produce repeatable lens motions across a range
of commercial smartphones (Samsung, Xiaomi, Huawei, etc.), with
consistent gyroscope/IMU response to the stimulus. Our framework
assumes only the presence of repeatable micro-parallax—a condition
that typically holds whenever the OIS loop responds deterministi-
cally to a narrow-band excitation. We note practical caveats: certain
camera modes may attenuate OIS actuation; speaker output or OS
audio policies may limit drive amplitude; and IMU calibration drift
can weaken the induced flow. In these cases, we can verify injection
by checking IMU–optical-flow coherence at the drive frequency and
fall back to single-frame inference when necessary.

5.2 Limitations of moving object and large-scale

environments.

Our approach is primarily designed for static scenes. In the presence
of dynamic objects, the introduced inconsistent motion cues can
deteriorate the accuracy of depth estimation. A potential remedy is
to apply motion masks to exclude moving regions during training
or inference. In addition, the micro-parallax generated by OIS per-
turbations is most effective within indoor-scale environments (up
to ∼10 m). For larger-scale scenes, the induced parallax becomes
too subtle relative to the scene depth, leading to degraded depth
accuracy.

6 Conclusion

We present MODepth, a monocular depth estimation framework
that leverages OIS-controlled lens motion via acoustic injection
to enable stable inter-frame parallax. By incorporating pose and
principal point offset estimation, our network MODNet effectively
utilizes multi-frame geometric cues. Evaluated on the MODdata
dataset, our method outperforms existing monocular approaches
and even fully supervised baselines, achieving an RMSE of 0.439,
demonstrating the strength of OIS-driven self-supervision.
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