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Abstract—Magnetic resonance imaging (MRI) provides high-
quality soft tissue contrast images and is crucial in medical
diagnosis. However, systems face trade-offs between image res-
olution and scan time. Low-resolution MRI scans reduce scan
time and patient burden but lose critical details needed for
accurate diagnosis. To address this problem, super-resolution
techniques have been developed to improve the clarity of low-
resolution input images. Single-image super-resolution (SISR),
which minimizes patient scanning time, has gradually become a
research focus, but existing methods often struggle to balance
the reconstruction of low-frequency structural information and
high-frequency details. In this paper, we propose a novel super-
resolution up-sampling pipeline that enhances both the high-
frequency and low-frequency components of magnetic resonance
imaging. In addition, we introduce an enhanced loss function
that includes symmetry and edge constraints to preserve critical
structural details for improved diagnostic accuracy. The extensive
experiments across multiple datasets validate the effectiveness of
our SISR model. Source code will be made publicly available.

Index Terms—Magnetic Resonance Imaging, Single-image
Super-resolution, Deep Learning

I. INTRODUCTION

Magnetic Resonance Imaging (MRI) is of great importance
in medicine, helping doctors to accurately diagnose and treat
various conditions by providing high-quality contrast images
of soft tissue [1]. However, high-resolution images require
longer scanning times [2], [3], increasing patient discomfort
and the risk of motion artifacts. Moreover, high-resolution
scans usually require more expensive equipment and complex
operational procedures, which increase healthcare costs and
are not conducive to their rollout in resource-limited healthcare
organizations. However, low-resolution images lose details,
making it difficult to detect small but critical lesions, thus
affecting the accuracy and timeliness of diagnosis. Image blur-
ring and artifacts can also interfere with a doctor’s judgment,
increasing the risk of misdiagnosis and missed diagnosis. To
address these issues, researchers have developed various super-
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resolution techniques [4], [5] that improve image clarity based
on low-resolution images and up-sampling techniques.

Based on the number of input low-resolution MRI im-
ages, existing super-resolution systems can be classified into
multi-image super-resolution (MISR) and single-image super-
resolution (SISR). Although the acquisition time of a single
low-resolution MRI image is significantly shorter, the scan-
ning time associated with multi-frame image input is non-
negligible. To minimize patient burden, SISR systems offer
significant advantages.

To recover high-frequency information from low-resolution
MRI images, recent researches [4], [6]–[9] have proposed
SISR networks based on deep learning. EDSR [6] proposed a
SISR network with optimized residual structure and achieves
multi-scale image super-resolution. LIIF [7] introduced a novel
method for continuous image representation that predicts RGB
values at arbitrary resolutions using image coordinates and
local 2D deep features. LTE [8] enhanced implicit neural func-
tions in single image super-resolution (SISR), enabling high-
frequency texture estimation in the Fourier domain for accurate
and continuous image reconstruction at arbitrary scales. For
MRI image super-resolution, ArSSR [9] proposed an Arbi-
trary Scale Super-Resolution approach for 3D MRI that uses
implicit neural representations to reconstruct high-resolution
images from low-resolution inputs, enabling continuous and
arbitrary up-sampling rates with a single model. DRFSA [4]
proposed a multiple perceptron (MLP) based on depth residual
Fourier to extract image high-frequency features.

Conventional super-resolution methods often struggle to
balance low- and high-frequency feature processing, leading
to suboptimal reconstruction of structural details and fine
textures. Most existing approaches handle these components
separately, lacking a unified optimization framework. More-
over, they typically rely on pixel-wise losses such as mean
squared error (MSE), which emphasize intensity accuracy but
fail to preserve critical edge structures—resulting in blurred
or distorted details that are vital for medical image analysis.

To address these challenges, first, we propose a novel super-



resolution up-sampling structure that employs a single up-
sampling module to enhance both the high-frequency and low-
frequency components of the MRI image in the transform
domain by a factor of 2, thereby achieving 2N -fold super-
resolution reconstruction with N up-sampling modules (N =
1, 2, 3, . . . ). For the low-frequency component, we utilize a
convolutional block based on a soft-thresholding operator
to filter and extract high-energy low-frequency features. In
contrast, for the high-frequency component, we implement
an LTE-based structure to estimate texture details. Then,
we employ an enhanced loss function to train the model.
In addition to the traditional MSE loss, we incorporate a
constraint loss to enforce symmetric constraints and an edge
loss to preserve and enhance edge details, thereby optimizing
the model’s performance.

In this paper, we evaluate the SISR model on the publicly
available IXI and SIMON datasets, selected for their diversity,
multi-center acquisition, and clinical relevance. Both datasets
feature high-quality preprocessing and minimal noise, ensuring
reliable and reproducible evaluation. IXI includes multiple
MRI modalities, enabling multimodal analysis, while SIMON
focuses on clinical scenarios, validating the model’s practical
applicability. Together, they provide a comprehensive bench-
mark for assessing our method.

The main contributions of this work are as follows:

• We propose a novel super-resolution up-sampling struc-
ture that simultaneously extracts the low and high-
frequency features of an image over the MRI transform
domain, taking into account both the structural low-
frequency information and the high-frequency detail fea-
tures.

• We propose a hybrid loss function that combines L1
loss, symmetric constraint loss, and edge loss to enhance
the recovery of image edge information and improve the
medical diagnostic value of the SR image output.

• We conduct extensive experiments to validate the ef-
fectiveness of our SISR model. The results demonstrate
that, compared to previous MRI SISR models, our model
delivers superior image quality across multiple datasets.

• We contribute SISRMRI, a public MRI dataset focused
on ccRCC with pseudocapsule, featuring multi-resolution
T2-weighted imaging and comprehensive acquisition pa-
rameters.

II. PRELIMINARY

MRI images are generated through a complex interplay of
magnetic fields, radiofrequency pulses, and advanced compu-
tational techniques [10]. The process involves aligning protons
in a strong magnetic field, perturbing them with RF pulses, de-
tecting the emitted signals during relaxation, spatially encod-
ing these signals using gradient fields, and reconstructing the
Fourier space data into high-resolution images using Fourier
transform and image processing algorithms. In the medical
imaging community, this Fourier space is referred to as k-
space [11]. The reconstructed MRI image Ir can be obtained
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Fig. 1. HR images and LR images possess similar low-frequency features that
correspond to image structural information; however, LR images lack detailed
information corresponding to high-frequency features.

from the full k-space sampling y by performing an inverse
multidimensional Fourier transform:

Ir = F−1(y) (1)

However, the full k-space sampling is constrained by several
limitations, such as prolonged sampling durations, necessi-
tating patient immobility, attenuation of magnetic resonance
signals, and physical constraints inherent to hardware facilities.
In clinical practice, MRI images are typically reconstructed
through k-space sub-sampling techniques, which include both
fast and slow sampling methods. These approaches result
in medical images of lower and higher spatial resolution,
respectively:

yf = Pf (F(Ir)) +Nf (2)

Ilr = argmin
Ilr

R(Ilr) s.t.∥F(Ilr)− yf∥22 ≤ ϵ (3)

ys = Ps(F(Ir)) +Ns (4)

Ihr = argmin
Ihr

R(Ihr) s.t.∥F(Ihr)− ys∥22 ≤ ϵ (5)

Here, P denotes the k-space sampling function, and N
corresponds to the system noise. y represents the k-space
subsampled signal acquired at all measured spatial frequencies
while simultaneously minimizing a sparsity-inducing objec-
tive R(·) under certain domains, which penalizes unnatural
reconstructions [12]. Ihr denotes the generated high-resolution
medical image, Ilr represents the generated low-resolution
medical image, and ϵ is the specified small threshold value.

Consequently, considering that both ys and yf are sub-
samples of the fully sampled k-space signal y, then Ilr
and Ihr are also approximated in the frequency domain as
subsamples yf , ys of the k-space signal y. Due to the different
sampling rates employed, yf and ys share essentially the
same low-frequency components, meanwhile the subsampled
ys contains richer high-frequency details. As illustrated in
Fig. 1, the 2D Fourier transforms F(Ihr) and F(Ilr) of
the high-resolution image Ihr and the low-resolution image
Ilr, respectively, exhibit similarity in the central portion of



their magnitude Spectrum. Specifically, F(Ihr) and F(Ilr)
share nearly identical low-frequency components. However,
F(Ilr) lacks the edge details present in F(Ihr), indicating
that F(Ihr) contains a greater number of high-frequency
components. The SISR technique for medical imaging focuses
on learning a transformation function that maps input low-
resolution images Ilr to their corresponding high-resolution
images Ihr. Simultaneously, their frequency-domain represen-
tations are transformed from an approximation ŷf of yf to
an approximation ŷs of ys. We use the following formula to
convert ŷf to ŷs:

ẏs = soft(ŷf ; θs) + G(Ilr; θg) (6)

where soft denotes a soft threshold function [13] with θs as
the threshold, which removes the high-frequency details with
lower energy in ŷf while retaining the low-frequency compo-
nents where energy is concentrated. Meanwhile, G represents
a priori model with conditional inputs parameterized by θg ,
generating the high-frequency components of ẏs based on the
input low-resolution image. In this case, the objective of the
SISR system is to find the optimal parameter θs, θg such that
the difference between ẏs and ŷs is minimized:

min
θs,θg

∥ẏs − ŷs∥22 (7)

III. METHOD

In this section, we introduce our neural network-based
SISR model. As shown in Fig. 2, our network model takes
a low-resolution MRI image Ilr ∈ R1×H×W as input and
obtains a high-resolution output of size Ihr ∈ R1×2NH×2NW

through N up-sampling modules. Next, we provide a detailed
description of the various modules within the network.

A. Initialization Module

The initialization module serves as the foundational stage of
the network architecture, responsible for transforming the in-
put low-resolution MRI images Ilr into rich, high-level feature
representations e. Unlike standard preprocessing pipelines that
may rely on interpolation or handcrafted filters, this module
is learnable and designed to capture both local anatomical
structures and global intensity patterns directly from the raw
image data. By applying a series of learnable convolutional
layers, the model maps the pixel intensities of Ilr into a struc-
tured latent space, effectively encoding spatial and contextual
information that is crucial for subsequent processing stages.
This deep feature embedding not only preserves essential
diagnostic content but also enhances robustness to noise and
artifacts commonly present in clinical MRI acquisitions.

To enable high-dimensional feature learning and improve
the model’s capacity for discriminative representation, we em-
ploy a dedicated convolutional block that expands the channel
dimensionality of the initial features from a low-dimensional
input space to a higher-dimensional latent space. Specifically,
the feature dimension is expanded from 1 channel (grayscale
intensity) to nemb dimensions, where nemb is set to 96 by
default. This dimensional expansion allows the network to

learn a diverse set of feature maps that capture complementary
aspects of the underlying anatomy, such as edges, textures, and
regional contrasts. The convolutional block typically consists
of a 3 × 3 convolution followed by normalization and a
non-linear activation function (e.g., GELU), ensuring effective
feature separation and expressive power for downstream tasks
such as super-resolution or segmentation.

B. Up-sampling Module

We employ a novel up-sampling module to achieve 2×
up-sampling of image features. According to Eq. 6, the up-
sampling module separates feature up-sampling into two com-
ponents, high frequency and low frequency, to achieve the
operations described as soft and G.

a) Low-Frequency Feature Module: We first up-sample
the feature e ∈ Rnemb×H×W using a transpose convolution
block Ul to obtain Ul(e) ∈ Rnfea×2H×2W , where nfea is
the output feature dimensions (default is 64). Given that e is
a deep feature extracted from the image space, to preserve
its high-energy components, we need to first transform e
into an alternative domain before applying soft threshold
filtering. Motivated by the invertible properties of domain
transformation methods, such as the Fourier transform [14],
wavelet transform [15], and discrete cosine transform [16], we
design two domain transformation operators ϕ and ϕ̃, where
ϕ̃ serves as the inverse operator of ϕ, i.e., ϕ̃ × ϕ = I, with
I being the identity operator. Specifically, ϕ is designed to
exhibit a structure symmetric to that of ϕ̃, and is therefore
modeled as two linear convolutional operators separated by
a GeLU operator, as illustrated in Fig. 2. Since both ϕ and
ϕ̃ are learnable, we incorporate symmetric constraints of the
form ∥ϕ̃ × ϕ − I∥22 = 0 into the loss function during net-
work training. Therefore, Low frequency up-sampling features
el ∈ Rnfea×2H×2W can be efficiently computed in closed-
form as:

el = ϕ̃(soft(ϕ(Ul(e)); θs)) (8)

b) High-Frequency Feature Module: We use an LTE-
based [8] network structure to generate high-frequency fea-
tures eh for images. First, we use the standard RSTB (residual
swin transformer blocks) [17] as the main component of
the encoder E. The RSTB is a building block within the
Swin Transformer that combines the strengths of hierarchical
attention mechanisms and residual learning. The encoder E
consists of 4 RSTB layers, each with a depth of 6 and 6
attention heads per Swin Transformer layer. For an input
e ∈ Rnemb×H×W , the encoder processes it through the
RSTB, utilizing a convolutional block to generate the output
E(e) ∈ Rnfea×H×W . The encoder is capable of extract-
ing natural image features within the receptive field (RF),
thereby aiding the LTE in estimating crucial high-frequency
information in the transform domain. Inspired by position
encoding [18] and Fourier feature mapping [19], the Local
Texture Estimator(LTE) is a dominant frequency estimator for
images. LTE transforms input coordinates into the transform
domain before passing them through an MLP to address
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Fig. 2. Detailed framework of our SISR model for MRI. Each repetition comprises a transition module and an up-sampling module, designed to upscale
the image features by a factor of 2. The network model contains N repetitions, allowing it to up-sample the image features by a factor of 2N . Notably, the
transition module in the first repetition is replaced by an initialization module.
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Fig. 3. The architecture of Local Texture Estimator(LTE). The LTE takes as inputs the feature map E(e) from the encoder, along with a local grid and cell.
LTE then transforms these input coordinates into the transform domain by extracting amplitude, frequency, and phase information. The resulting output is
passed through a decoder (MLP) to generate the high-frequency features eh.

the spectral bias problem inherent in implicit neural func-
tions. LTE’s estimated transform information is data-driven
and captures image textures within the 2D transform space.
Immediately after that, the decoder D maps the latent tensor
and local coordinates back to the image feature domain. The
decoder D is a 4-layer MLP with ReLU activation, with default
hidden dimensions 256 and default output dimensions nfea.
Ultimately, the local implicit neural representation as a high-
frequency feature can be obtained by LTE using the following
equation:

eh(x, y) =
∑
i∈Ψ

wiD(Υ (E(e), x− xi, y − yi)) (9)

Here, Υ denotes the LTE, which is shift-invariant. As shown
in Fig. 3, it consists of three elements: an amplitude estimator,
a frequency estimator, and a phase estimator. Moreover, Ψ is
a set of indices for the four nearest latent codes (in terms of
Euclidean distance) around position (x, y), and wi represents
the bilinear interpolation weight corresponding to latent code i
(referred to as the local ensemble weight [7]), with

∑
i∈Ψ wi =

1). We fix LTE to perform only 2x scaling, resulting in eh ∈
Rnfea×2H×2W .

Finally, the up-sampled image features can be obtained as
follows:

eup = el + eh, eup ∈ Rnfea×2H×2W (10)

C. Transition Module

When feature e ∈ Rnemb×H×W is input, the up-sampling
module outputs an upsampled feature eup ∈ Rnfea×2H×2W .
Similarly, when the feature eN ∈ Rnemb×2N−1H×2N−1W is
input, the up-sampling module outputs the image feature eNup ∈
Rnfea×2NH×2NW . To enable the inputs from the previous up-
sampling module to be passed to the next up-sampling module,
we introduce a transition module to adjust the feature shapes
accordingly. The transition module uses a convolutional block
to map the output ejup ∈ Rnfea×2jH×2jW of the j-th up-
sampling module to ej+1 ∈ Rnemb×2jH×2jW , which is then
used as the input for the (j +1)-th up-sampling module (j =
1, 2, 3, . . . , N ).



TABLE I
PSNR, SSIM, AND LPIPS RESULTS FOR ALL COMPARED MODELS AT UPSCALING FACTORS 2X, 4X, AND 8X ON THE IXI T1, T2, PD, AND SIMON

DATASETS.

Dataset Model 2x 4x 8x
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

IXI T1

Bicubic 28.89 0.899 0.057 22.64 0.677 0.308 19.53 0.510 0.524
EDSR [6] 35.39 0.965 0.025 27.90 0.849 0.118 24.24 0.714 0.233
LIIF [7] 35.52 0.966 0.024 28.14 0.859 0.109 24.82 0.743 0.195
LTE [8] 35.04 0.958 0.031 27.59 0.843 0.116 24.13 0.698 0.215

DRFSA [4] 35.37 0.965 0.026 28.23 0.859 0.111 24.73 0.738 0.199
ArSSR [9] 30.22 0.921 0.052 23.86 0.727 0.264 20.73 0.559 0.434

ours 35.71 0.968 0.023 28.56 0.870 0.101 24.92 0.750 0.188

IXI T2

Bicubic 28.82 0.917 0.046 22.52 0.740 0.233 19.51 0.596 0.419
EDSR [6] 35.51 0.969 0.020 26.83 0.864 0.101 22.59 0.738 0.214
LIIF [7] 35.77 0.969 0.020 27.12 0.868 0.098 22.85 0.746 0.197
LTE [8] 35.49 0.970 0.020 27.48 0.876 0.089 23.72 0.763 0.164

DRFSA [4] 35.31 0.968 0.020 26.91 0.868 0.104 22.66 0.743 0.205
ArSSR [9] 30.42 0.936 0.041 23.81 0.776 0.209 20.55 0.629 0.373

ours 37.41 0.976 0.013 28.48 0.899 0.076 24.37 0.803 0.143

IXI PD

Bicubic 29.39 0.927 0.043 22.64 0.752 0.229 19.07 0.591 0.426
EDSR [6] 36.98 0.974 0.018 28.77 0.884 0.087 23.86 0.765 0.179
LIIF [7] 37.16 0.975 0.018 28.85 0.887 0.083 24.04 0.773 0.162
LTE [8] 36.37 0.975 0.019 28.89 0.894 0.079 24.96 0.777 0.147

DRFSA [4] 36.85 0.973 0.019 28.78 0.887 0.090 23.82 0.766 0.169
ArSSR [9] 30.99 0.944 0.038 24.02 0.792 0.199 20.30 0.633 0.355

ours 38.62 0.980 0.012 30.46 0.915 0.069 26.25 0.829 0.128

SIMON

Bicubic 31.84 0.924 0.050 25.58 0.745 0.238 22.55 0.600 0.450
EDSR [6] 37.63 0.970 0.029 29.85 0.873 0.114 25.34 0.724 0.257
LIIF [7] 37.94 0.971 0.028 30.21 0.876 0.119 25.61 0.734 0.239
LTE [8] 36.03 0.965 0.038 29.75 0.858 0.127 24.73 0.678 0.310

DRFSA [4] 36.09 0.963 0.039 29.93 0.874 0.115 25.53 0.727 0.242
ArSSR [9] 33.29 0.940 0.047 27.02 0.783 0.214 23.68 0.635 0.414

ours 36.52 0.971 0.027 30.22 0.873 0.111 25.79 0.741 0.236

SISRMRI

Bicubic 34.91 0.916 0.031 27.70 0.670 0.285 24.15 0.574 0.537
EDSR [6] 43.62 0.981 0.014 31.78 0.797 0.181 27.85 0.672 0.394
LIIF [7] 43.08 0.981 0.015 31.55 0.792 0.174 27.61 0.662 0.438
LTE [8] 42.97 0.980 0.015 31.86 0.798 0.180 27.92 0.674 0.407

DRFSA [4] 43.91 0.983 0.012 31.73 0.798 0.170 27.81 0.672 0.396
ArSSR [9] 38.31 0.956 0.026 28.78 0.709 0.273 26.16 0.628 0.504

ours 44.57 0.983 0.012 31.96 0.801 0.172 27.99 0.676 0.388

Finally, an additional convolutional block maps the out-
put features eNup of the last up-sampling module back into
the image space, producing the high-resolution MRI image
Îhr ∈ R1×2NH×2NW .

D. Training Strategy

Given the training data pairs (Ilr,Ihr), the model takes Ilr
as input and generates the high-resolution MRI image Îhr.
We seek to minimize the difference between Ihr and Îhr
while satisfying symmetry constraints: ϕ̃j × ϕj = I, ∀j ∈
[1, . . . , N ] [20], [21]. Considering that the integration of
edge loss into the training process has been demonstrated
to significantly enhance the quality of super-resolved images,
especially in areas where fine details and sharp transitions
are crucial for perceptual accuracy, we incorporate an edge
loss function to penalize the discrepancies in edge features

between Ihr and Îhr [22]. Therefore, we design the end-to-end
loss function for our model as follows:

Ltotal = Ldifference + λLconstraint + µLedge (11)

with:
Ldifference = |Îhr − Ihr|
Lconstraint =

∑N
j=1 ∥ϕ̃j(ϕj(Ul(e

j)))− Ul(e
j)∥22

Ledge = ∥Edge(Ihr)− Edge(Îhr)∥22

(12)

where λ and µ is the regularization parameter, j ∈ [1, . . . , N ]
refers to the j-th up-sampling module, and Edge(·) represents
the edge map of an image, typically obtained using a Sobel
filter [23] by default. In our experiments, λ is set to 0.01 and
µ is set to 0.01.



Fig. 4. Qualitative comparison of different methods at upscaling factors 2x, 4x, and 8x.

IV. EXPERIMENTS

A. Experimental Setup

a) Datasets: To demonstrate the effectiveness of our
method, we evaluate our model on three datasets.

Dateset1-IXI [24]. The IXI dataset, comprising over 600
diverse MRI scans from multiple London hospitals, provides
high-resolution images ideal for evaluating SISR techniques.
This dataset, particularly its T1-weighted images, is a standard
benchmark in medical imaging research, offering variability
that supports robust algorithm assessment.

Dateset2-SIMON [25]. The SIMON dataset includes var-
ious MRI modalities and captures a wide range of patient
demographics, making it an excellent resource for developing
and assessing image processing algorithms. Its extensive and
varied data ensure robust evaluation of SISR methods, partic-
ularly in handling different imaging conditions and anatomical
structures.

Dataset3-SISRMRI Our dataset comprises data collected
from June 2014 to June 2017 at a famous hospital in China.
During this period, a total of 1015 consecutive patients
suspected of having renal cell carcinoma (RCC) underwent
preoperative MRI examinations. Among these patients, those
diagnosed with clear cell RCC (ccRCC) and who had patho-
logically confirmed pseudocapsule formation were included in
this study.

All MRI scans were performed in the supine position using
a 3.0T MR scanner (Ingenia; Philips Medical Systems, Best,

the Netherlands). Two T2-weighted imaging sequences with
different spatial resolutions were retrospectively analyzed. The
imaging parameters were as follows: TR/TE = 1500/90 ms,
flip angle = 90°, slice thickness = 4 mm. The high-resolution
sequence had a voxel size of 0.3×0.3 mm with a scan time of
7 minutes and 30 seconds, while the low-resolution sequence
had a voxel size of 0.9×0.9 mm and a scan time of 2 minutes
and 5 seconds.

These MRI datasets are systematically partitioned into train-
ing, validation, and testing subsets with a ratio of 7:2:1,
respectively. This division is carefully conducted based on
distinct individuals to ensure that each subset adequately
represents the diversity of the data.

Evaluation metrics. Peak signal-to-noise ratio (PSNR) and
structural similarity index measure (SSIM) [26], learned
perceptual image patch similarity (LPIPS) [27] are employed
to assess the similarity between the super-resolution (SR)
results and the ground truth images.

b) Implementation Details: In our experiments, we uti-
lized the Adam optimizer [28] to train the model for 100
epochs. The Adam optimizer is chosen due to its adaptive
learning rate mechanism, which computes individual learning
rates for different parameters. Specifically, the optimizer was
initialized with a learning rate of 1e− 4, with β1 = 0.9, β2 =
0.999 and ϵ = 1e − 8. These values are standard for Adam
and were selected based on their effectiveness in stabilizing
training across a wide range of models. To enhance the conver-
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Fig. 5. The ablation experiments of our system at upscaling factors 2x, 4x,
and 8x.

gence and performance of the model, we employed a learning
rate scheduler, specifically the MultiStepLR scheduler [29].
The scheduler decreases the learning rate by a factor of 0.1
at predefined epochs, specifically at the 40th and 80th epochs.
This step-wise reduction in the learning rate helps the model
to fine-tune and reach a more optimal solution by allowing
larger steps during the initial phase of training and smaller,
more precise steps as the model converges. The batch size of
the training phase is 8, and the size of each high-resolution
MRI image is 256× 256. We use PyTorch [29] to implement
models on an NVIDIA Tesla V100 GPU.

B. Experimental Results

Qualitative Comparison. The experimental results summa-
rized in Tab. I demonstrate the efficacy of our proposed neural
network approach to MRI single-image super-resolution, as
evidenced by consistent improvements across multiple datasets
(IXI T1, T2, PD, and SIMON) and up-sampling factors (2x,
4x, and 8x). Compared to state-of-the-art methods such as
EDSR [6], LIIF [7], LTE [8], DRFSA [4], and ArSSR [9], our
model achieves superior performance in terms of peak signal-
to-noise ratio (PSNR), structural similarity index (SSIM), and
learned perceptual image patch similarity (LPIPS). Specifi-
cally, our model outperforms others with a notable margin,
particularly on challenging up-sampling factors like 4× and
8×. For instance, on the IXI T2 dataset at 4× up-sampling,
our model achieves a PSNR of 28.48 dB, an SSIM of 0.899
and an LPIPS of 0.076, which are significantly higher than the

closest competitor, LTE, with a PSNR of 27.48 dB, an SSIM
of 0.876 and an LPIPS of 0.089, respectively.

As shown in Fig. 4, the reconstructed high-resolution
images using our method show significantly fewer artifacts
and better preservation of fine details compared to the other
methods. For example, while the Bicubic interpolation results
are heavily blurred and fail to capture the intricate details of
the MRI scans, and ArSSR introduces noticeable distortions,
our approach maintains the structural integrity and sharpness
of the images. These visual and quantitative results collectively
demonstrate that our SISR model excels in the perceptual
quality of the reconstructed high-resolution MRI images.

C. Ablation Study

To further validate the effectiveness of our proposed net-
work architecture, we conducted an ablation study focusing
on the contributions of the high-frequency and low-frequency
feature modules in our model. The results, presented in Tab. II
and Fig. 5, illustrate the performance of the network when
using only the high-frequency feature module, only the low-
frequency feature module, and the full model that integrates
both. When the network is configured to utilize only the high-
frequency feature module, a degradation in performance is
observed across all up-sampling factors (2×, 4×, and 8×).
Specifically, the PSNR and SSIM values decrease, while the
LPIPS score increases, indicating that although the model cap-
tures some fine details, it struggles with overall image quality
and structural similarity. For instance, at 4× upsampling, the
PSNR is 27.44 dB and the SSIM is 0.878, both of which are
lower than those achieved by the full model.

Conversely, when the network is constrained to utilize only
the low-frequency feature module, its performance is also
inferior compared to that of the full model. The network’s
ability to reconstruct fine details is constrained, as indicated by
a relatively higher LPIPS score. For instance, at 8× upscaling,
the PSNR is 23.60 dB, which is lower than that of the full
model, and the LPIPS score is 0.166, signifying a perceptual
quality loss.

The full model, which integrates both high-frequency and
low-frequency feature modules, yields the best results, under-
scoring the significance of combining both modules. This con-
figuration attains the highest PSNR and SSIM values, as well
as the lowest LPIPS scores, across all up-sampling factors. At
4× up-sampling, the full model achieves a PSNR of 28.48
dB and an SSIM of 0.899, significantly outperforming the
other configurations. These results confirm that both frequency
feature modules are crucial for achieving superior image super-
resolution, and their integration is essential for the model’s
optimal performance.

V. CONCLUSION

This study presents a novel Single-image Super-resolution
system (SISR), the proposed up-sampling structure is designed
to address the challenges of super-resolution magnetic reso-
nance imaging by efficiently enhancing both high-frequency



TABLE II
QUANTITATIVE RESULTS OF ABLATION EXPERIMENTS ON THE IXI-T2 DATASET.

High-frequency Low-frequency 2x 4x 8x
PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓ PSNR↑ SSIM↑ LPIPS↓

✓ 36.32 0.972 0.015 27.44 0.878 0.090 22.78 0.728 0.163
✓ 35.11 0.965 0.019 27.34 0.875 0.090 23.60 0.776 0.166

✓ ✓ 37.41 0.976 0.013 28.48 0.899 0.076 24.37 0.803 0.143

and low-frequency image components. In addition, the en-
hanced loss function integrating symmetry and edge con-
straints greatly enhances the preservation of critical structural
details essential for medical diagnosis. The results show that
our method not only improves the quality of super-resolution
images but also has great potential for widespread application
in clinical settings, especially in resource-limited healthcare
environments.
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