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Abstract—As cardiovascular diseases and arrhythmias rise
globally, pacemakers have become a critical therapeutic option
for managing cardiac rhythm disorders. Accurate identification
of pacemaker implantation sites is essential for personalized
pacing therapy and optimal clinical outcomes. While 12-lead
electrocardiogram (ECG) signals provide a non-invasive means
to infer implantation locations, they are susceptible to noise and
morphological variability, posing challenges for high-accuracy
localization. To advance data-driven solutions in this domain, we
present PILDE, the first publicly available dataset specifically
designed for pacemaker implantation site identification, com-
prising 12-lead ECG recordings from 733 patients across four
distinct implantation locations. Based on this dataset, we propose
STELLAR, a novel deep learning framework that integrates a
Spatio-Temporal Lead-Harmonic Mechanism to model both the
temporal dynamics of ECG waveforms and the spatial coherence
across leads. Extensive experiments demonstrate that STELLAR
outperforms conventional deep models—including CNN, LSTM,
and Transformer baselines—on both the PILDE and PTB-XL
datasets. Specifically, STELLAR achieves an average accuracy
improvement of 10.45% on PILDE and 14.19% on PTB-XL,
with significant gains in sensitivity and F1-score for minority
classes. These results highlight the robustness and precision of
STELLAR in automating implantation site identification, offering
a promising tool for pre-procedural planning and clinical decision
support. The source code and dataset access information will be
made publicly available.

Index Terms—Pacemaker Recognition, 12-lead ECG, Spatio-
Temporal Lead-Harmonic Mechanism

I. INTRODUCTION

Cardiac rhythm disorders, particularly those involving dys-
function of the cardiac conduction system—such as brady-
cardia, atrioventricular conduction block, and atrial fibrilla-
tion—are a growing global public health concern. According
to the World Health Organization (WHO), cardiovascular dis-
eases remain the leading cause of death worldwide, responsible
for over 17 million deaths annually [1], with a significant
proportion linked to arrhythmias like bradycardia and atrial
fibrillation. To address these disorders, cardiac pacemakers

† Both authors contributed equally to the research.
∗ Dian Ding is Corresponding author.

Which kind ?

Fig. 1. STELLAR enables convenient and low-cost pacemaker recognition
based on 12-lead ECG signals.

have become a vital therapeutic tool. These small implantable
devices deliver electrical impulses to regulate heart rate and
rhythm, maintaining normal cardiac function. Over 10 million
people worldwide have received pacemaker implants to date
[2], [3], underscoring their critical role in improving quality
of life and extending survival.

Pacemakers can be classified into four types based on
the implantation location and the heart area they stimulate
[4]. Biventricular Pacing (BP) stimulates both the left and
right ventricles simultaneously and is suitable for heart failure
patients, helping to improve the heart’s pumping function.
Right Ventricular Septal Pacing (RVSP) stimulates the
right ventricular septum and is commonly used for the right
bundle branch block, improving the coordination of heart
contractions. Right Ventricular Apex Pacing (RVAP) is a
common type of single-chamber pacing, suitable for conditions
like bradycardia, and works by stimulating the apex of the right
ventricle. Left Bundle Branch Pacing (LBBP) stimulates
the left bundle branch and is used for bundle branch block,
improving the heart’s conduction function.

Accurately identifying the type of pacemaker required is



crucial for formulating an appropriate surgical plan, as differ-
ent pacing modalities involve distinct procedural approaches,
technical demands, and levels of complexity. For instance,
right ventricular apical or septal pacing (RVAP/RVSP) involves
relatively simple implantation techniques suitable for routine
procedures, whereas left bundle branch pacing (LBBP) re-
quires precise lead placement guided by intraoperative elec-
trophysiological monitoring, making it technically more de-
manding. Biventricular pacing (BP) entails the implantation of
multiple leads and involves a more complex surgical pathway
with higher procedural risks. Therefore, preoperative determi-
nation of the pacing strategy directly influences surgical du-
ration, safety considerations, operator expertise requirements,
equipment preparation, and perioperative management.

Identifying a pacemaker can be done in a number of ways,
including scans, electrocardiograms (ECG), and X-rays. The
following are specific applications of these three methods.
Programming Device Scan: A specialized programming de-
vice can communicate directly with the pacemaker to read
its internal information, such as make, model, serial number,
and specific setup parameters [5]. X-ray: X-rays can show the
location of the pacemaker device and the layout of the wires
in the body [6]. Electrocardiogram (ECG): The ECG shows
patterns of electrical activity in the heart, which can be used
to deduce the operating status of the pacemaker [7].

However, Programming Device Scan requires specialized
equipment and medical personnel, making it difficult to im-
plement in resource-limited healthcare settings. X-ray detec-
tion is costly and involves ionizing radiation, which carries
certain safety risks. Additionally, identifying pacemaker types
based on electrocardiograms (ECGs) is challenging due to
the subtle differences in ECG features among various pacing
modes, which are easily influenced by lead position, individual
anatomical variations, and conduction status. More impor-
tantly, the current lack of large-scale, well-annotated public
datasets limits the training and validation of algorithmic mod-
els, further increasing the difficulty of automatic classification.

With the development of deep learning and other technolo-
gies, researchers have successfully implemented ECG-based
atrial fibrillation prediction [8], as well as early diagnosis and
monitoring of heart diseases such as myocardial infarction
[9], heart failure [10], and QT interval abnormalities [11].
We aim to use deep learning models to classify pacemaker
implantation locations based on ECG, as different implantation
locations can alter the propagation of cardiac electrical activity,
thereby affecting the shape and duration of the QRS complex
[12]. Based on this, we propose a pacemaker implantation
location classification system based on ECG signals. Our main
contributions include:

• To the best of our knowledge, we present the first
Pacemaker Implantation Localization Dataset based on
12-lead ECG signals (PILDE), containing samples from
733 patients. The data have been anonymized to ensure
privacy and ethical approval has been obtained from the
relevant ethics committee.

• We propose the STELLAR, the Spatio-Temporal ECG-
based pacemaker Localization via Lead-hARmonic
model that models the spatial correlation between leads
by graph convolutional network, and innovatively em-
ploys multi-scale time-frequency convolution to capture
the autocorrelation and temporal dynamics of 12-lead
ECG.

• Our STELLAR model demonstrates a significant ac-
curacy improvement of up to 10.45% on the PILDE
dataset, outperforming other methods. Additionally, it
achieves a 14.19% improvement on the PTB-XL dataset,
further showcasing its robustness and effectiveness across
different ECG datasets.

II. BACKGROUND

High-quality, well-annotated datasets are becoming increas-
ingly critical in the development and validation of signal pro-
cessing algorithms and machine learning models in cardiology.
These datasets not only facilitate the understanding of the elec-
trophysiological characteristics of paced rhythms but also pro-
vide essential support for designing automated detection and
classification systems. Cardiac pacemakers have evolved from
simple single-chamber devices to more sophisticated systems,
such as biventricular pacing used in cardiac resynchronization
therapy (CRT) for heart failure patients. This evolution has
significantly improved the quality of life for patients with
conduction system disorders. As these technologies advance,
the accurate identification and classification of different types
of pacemaker signals have become increasingly important.

Accurate signal classification is crucial for optimizing pace-
maker functionality and enhancing diagnostic precision and
therapeutic outcomes, thereby further improving patient health
and quality of life. By analyzing and categorizing these sig-
nals, researchers can develop smarter and more personalized
rhythm management strategies, ensuring optimal treatment for
each individual. High-quality datasets enable the training of
intelligent classification models that can dynamically adjust
treatment protocols based on detailed signal analysis, leading
to enhanced patient outcomes and more effective personalized
care. Thus, precise signal classification plays a pivotal role in
advancing both the technical capabilities and clinical efficacy
of cardiac rhythm management.

A. Cardiac Pacemaker
Cardiac pacemakers are classified by implantation site,

each inducing distinct ventricular activation patterns and QRS
morphologies on ECG. We consider four common types:

a) Biventricular Pacing (BP): Also known as cardiac
resynchronization therapy (CRT), BP stimulates both ven-
tricles simultaneously via leads in the right ventricle and
coronary sinus. It is used for heart failure patients with dyssyn-
chrony, producing relatively narrow, fused QRS complexes.

b) Right Ventricular Septal Pacing (RVSP): This phys-
iological pacing method targets the interventricular septum,
yielding activation closer to natural conduction. It results in
narrow QRS with minimal deviation, reducing dyssynchrony
risk.



Fig. 2. Schematic representation of a typical ECG waveform.

c) Right Ventricular Apex Pacing (RVAP): A conven-
tional approach, RVAP stimulates the right ventricular apex,
leading to non-physiological apex-to-base activation. It pro-
duces wide QRS complexes (¿120 ms) with LBBB-like mor-
phology and is associated with long-term cardiac dysfunction.

d) Left Bundle Branch Pacing (LBBP): An emerging
physiological pacing technique, LBBP directly captures the
left conduction system. It restores near-normal activation,
generating narrow QRS (¡120 ms) that closely resembles
intrinsic conduction, ideal for bundle branch block patients.

B. Principles of Pacemaker Recognition

The electrocardiogram (ECG) serves as a valuable tool for
identifying cardiac pacing modes due to the distinct QRS
morphological patterns generated by different lead placements
and activation sequences. Each pacing mode alters ventricular
depolarization in a characteristic way, resulting in reproducible
changes in QRS width, axis, and waveform configuration.
These ECG signatures reflect the underlying electrophysiolog-
ical behavior of the paced heart and enable reliable differen-
tiation between pacing types in clinical practice.

As shown in Fig. 2, the QRS complex as is a funda-
mental component of the electrocardiogram that represents
the electrical depolarization of the ventricular myocardium. It
typically consists of three deflections. The Q wave corresponds
to the initial downward deflection. The R wave represents the
first upward deflection. The S wave denotes the subsequent
negative deflection following the R wave. The morphology,
duration and axis of the QRS complex vary depending on
the underlying conduction pathway and ventricular activa-
tion sequence. In normal sinus rhythm, the QRS duration
ranges from 80 to 110 milliseconds, reflecting rapid and
synchronized ventricular depolarization via the His Purkinje
system. Alterations in QRS morphology such as widening,
notching or abnormal axis deviation are clinically significant
and may indicate conduction abnormalities, bundle branch
blocks, ventricular hypertrophy or the presence of artificial
cardiac pacing. As such, analysis of the QRS complex is

essential for diagnosing arrhythmias, assessing cardiac func-
tion and differentiating various physiological and pathological
conditions.Based on the morphological characteristics of the
QRS complex, the cardiac pacing modes discussed in the
previous section manifest as four distinct electrocardiographic
patterns.

Biventricular pacing, commonly used in cardiac resyn-
chronization therapy (CRT), activates both ventricles simul-
taneously through separate leads in the right ventricle and
coronary sinus. This synchronized stimulation produces a
relatively narrow QRS complex with normal or near-normal
morphology, reflecting coordinated ventricular activation. The
ECG typically shows fused QRS patterns, preserved P waves
(if atrial sensing is present), and normal T wave orientation,
closely resembling physiological conduction.

Right ventricular septal pacing delivers electrical impulses
to the interventricular septum, resulting in a more physiologi-
cal activation sequence compared to apical pacing. It generates
a narrow QRS complex with minimal deviation in morphol-
ogy—often classified as normal or slightly abnormal. The ECG
shows early activation of the septum, relatively synchronous
ventricular contraction, and a clearly visible pacing spike.

Right ventricular apical pacing initiates depolarization at
the apex of the right ventricle, leading to slow, abnormal
conduction that spreads transmurally and from apex to base.
This results in a wide, aberrant QRS complex (> 120 ms) with
a left bundle branch block (LBBB) or right bundle branch
block (RBBB)-like pattern. The ECG is characterized by a
prominent pacing spike followed by a broad QRS, ventricular
dyssynchrony, and secondary ST-T wave changes, all of which
are hallmarks of non-physiological ventricular activation.

Left bundle branch pacing (LBBP) represents a more recent
advancement in physiological pacing. By capturing the left
conduction system directly, LBBP restores rapid and synchro-
nized ventricular activation. The resulting QRS complex is nar-
row (< 120 ms) with a near-normal morphology, resembling
intrinsic conduction. The ECG shows early leftward activation,
synchronous ventricular depolarization, and preservation of
normal sequence, distinguishing it clearly from traditional
right ventricular pacing.

III. RELATED WORK

A. Traditional Machine Learning Approaches

The most commonly used machine learning methods in
cardiac health monitoring systems include Support Vector Ma-
chines (SVM), deep learning approaches, Linear Discriminant
Analysis (LDA), and Random Forests (RF) [13], [14]. SVM
performs classification of both linear and non-linear data by
mapping input samples into an n-dimensional feature space
(where n denotes the number of features) and identifying
an optimal hyperplane that maximizes the margin between
classes while minimizing classification errors, thereby achiev-
ing effective class separation [15]. Artificial Neural Networks
(ANNs), which form the foundation of deep learning, consist
of interconnected neurons organized into input, hidden, and
output layers. The connections between neurons are associated



with adjustable weights, which are iteratively optimized during
training through backpropagation, enabling the network to
learn complex patterns and make accurate predictions on
unseen data [15].

LDA aims to find a linear combination of features that max-
imizes the separation between different classes by reducing
dimensionality while preserving discriminative information.
This is achieved by minimizing within-class variance and
maximizing between-class variance, leading to an optimized
decision boundary [16]. Random Forest is an ensemble learn-
ing method composed of multiple decision trees, each trained
on different subsets of the data. Each tree generates an indi-
vidual classification result, and the final output is determined
through majority voting, which enhances model stability and
generalization performance [15].

From a clinical perspective, RF and linear methods are
advantageous due to their interpretability, facilitating the iden-
tification of meaningful biomarkers and improving clinical
decision-making [17].

B. Deep Learning Approaches

Recent advances in deep learning have significantly trans-
formed the landscape of ECG signal analysis. Unlike tradi-
tional machine learning approaches that rely on handcrafted
feature extraction, deep learning models are capable of auto-
matically learning hierarchical representations directly from
raw ECG signals. This end-to-end learning capability not
only reduces the dependency on domain expertise but also
enables the discovery of subtle, latent patterns that may be
overlooked by human experts, thereby improving the accuracy
and robustness of cardiac condition classification.

Several studies have demonstrated the effectiveness of
deep learning in various ECG-based diagnostic tasks. Multi-
Resolution Mutual Learning Network (MRMNet) [18], which
leverages a dual-resolution attention architecture and a feature
complementary mechanism to significantly enhance the per-
formance of multi-label ECG classification. ECG-LLM [19],
a framework that integrates large language models (LLMs)
with ECG. It pioneers the application of LLMs for imputing
missing signals in 12-lead ECGs by freezing the backbone
Transformer layers and introducing textual time markers.
CTRhythm [20], a method for single-lead ECG atrial fibrilla-
tion detection. It integrates CNN with a Transformer encoder,
which effectively captures both local features and long-range
dependencies. LVSD-ECG [21], a novel approach integrat-
ing 1D CNNs with a large-scale language model (LLM). It
enables simultaneous analysis of sequential ECG data and
non-sequential clinical metadata. ECGMamba [22], a model
based on Mamba, a specialized State Space Model (SSM). It
includes an ECG encoder using three 1D convolutions and a
Mamba layer with a Multi-Path Mamba-based block for global
context modeling, which offering an efficient and accurate
ECG classification approach. Additional research efforts [23]
further underscore the growing potential of deep learning in
enabling reliable, real-time cardiovascular disease screening
and monitoring.

IV. METHODS

A. Data Preprocessing

The raw 12-lead ECG signals are first standardized and
normalized to eliminate inter-lead variations and reduce noise
interference, ensuring consistent and stable inputs for subse-
quent heartbeat cycle segmentation and model training.

Next, the ECG data are divided into multiple heartbeat
cycles based on pacing points to maintain temporal consistency
across all 12 leads and increase the number of training sam-
ples. Specifically, we will first perform a difference operation
on the ECG signal to highlight the changing features of the
signal; further, we will calculate the mean and standard devia-
tion (std) of the differentiated signal and find the locations of
the feature points that are higher than mean+ 3 ∗ std, which
will be considered as pacing pegs by us; finally, we will divide
the signal into multiple cycles according to the pacing pegs,
and we will trim or compensate the data within each cycle to
ensure that the length of each cycle is 1000.

B. Model Structure

To enhance the performance of ECG diagnostic tasks, such
as identifying different cardiac pacing modalities and various
types of cardiac diseases, we propose a deep learning model,
STELLAR, which fully leverages the spatial and temporal
correlations in the 12-lead ECG signals. As shown in Fig. 3,
the proposed model consists of two components: the Lead-
harmonic Spatial Correlator, which captures the spatial corre-
lation between leads, and the Multi-scale Temporal Module,
which captures the autocorrelation and temporal dynamics of
each lead’s ECG signal.
Lead-harmonic Spatial Correlator. We innovatively inte-
grate the ECG lead system’s spatial constraints and harmonic
resonance properties into a graph convolution network (GCN).
Since there is a specific correlation between the 12 leads [24],
we divided the 12 leads into three subgraphs [25]. Standard
Leads (I, II, III): Capturing the propagation pattern of frontal
ECG vector loops. Augmented Leads (aVR, aVL, aVF):
Enhance signal-to-noise ratio of limb-end signals. Precordial
Leads (V1-V6): Mapping cross-sectional ventricular excita-
tion wavefront propagation.

Given an adjacency matrix A and the feature matrix X ,
the GCN model constructs a filter in the Fourier domain. The
filter, acting on the nodes of a graph, captures spatial features
between the nodes by its first-order neighborhood, and then the
GCN model can be built by stacking multiple convolutional
layers, which can be expressed as:

H(l+1) = σ
(
D̃− 1

2 ÃD̃− 1
2H(l)W (l)

)
(1)

where Ã = A+ IN is the matrix with added self-connections,
IN is the identity matrix, D̃ =

∑
j Ãij is the degree matrix,

H(l) is the output of l layer, W (l) is a layer-specific trainable
weight matrix, H(l) is the output of l layer, and σ(.) denotes
the ReLU function.

Thus, we fully explored the spatial correlation among the
12 leads of ECG data by the 3 GCN models. After that, we
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Fig. 3. Overall structure of our model.

concatenate the Embedding of the 3 GCN outputs and input the
merged results as features to the Multi-scale Temporal Module
to mine the temporal features of ECG signals.
Multi-scale Temporal Module. Inspired by effective methods
for modeling time-series data [26]–[29], we propose the Multi-
scale Temporal Module to enhance the analysis of ECG sig-
nals. Similar to approaches that transform traditional 1D time
series into structured 2D tensors [26], [27], [29], our module
leverages this transformation to capture intra-period and inter-
period variations simultaneously. By reconstructing the 1D
ECG signal into 2D tensors, the module takes advantage of
the inherent multi-periodicity of the data, allowing for the
application of 2D convolutional kernels. This enables the
model to capture intricate temporal patterns, including short-
term dynamics and long-term trends.

While the Lead-harmonic Spatial Correlator effectively cap-
tures the spatial correlations between leads through graph
structures in ECG signal analysis, the Multi-scale Temporal
Module further complements this by thoroughly modeling
the temporal correlations inherent in ECG signals. By recon-
structing the 1D signal into 2D tensors based on multiple
periodicities, the Multi-scale Temporal Module extracts intri-
cate temporal patterns, capturing both short-term intra-period
dynamics and long-term inter-period trends. The Multi-scale
Temporal Module comprises Temporal Blocks, which form
the core building units of the model. Each Temporal Block is
responsible for:

1. Multi-Periodicity Discovery: Using Fast Fourier Trans-
form (FFT), it adaptively identifies the most significant peri-
odic components {f1, f2, ..., fk} from the input time series,
where k is set to 2 in our experiments:

A = Avg(Amp(FFT(X1D))),

{f1, f2, . . . , fk} = argTopK(A), (2)

pi =

⌊
T

fi

⌋
, i ∈ {1, . . . , k}.

where FFT(·) denotes the fast Fourier transform, Amp(·)
denotes the computation of amplitude values, A represents
the amplitude spectrum, and pi denotes the estimated period
lengths.

2. 1D to 2D Transformation: The time series X1D ∈
RT×C is reshaped into multiple 2D tensors {Xi

2D}ki=1 based
on the detected periodicities:

Xi
2D = Reshapepi,fi

(
Padding(X1D)

)
(3)

where rows capture inter-period variations and columns rep-
resent intra-period variations.

3. Parameter-Efficient Representation Learning: The
transformed 2D tensors are processed by a parameter-efficient
inception block with multi-scale 2D convolution kernels:

X̂i
2D = Inception(Xi

2D) (4)

which enables the model to extract features across multiple
temporal scales simultaneously.

4. Feature Aggregation: Processed 2D tensors are reshaped
back into 1D representations and aggregated using a learned
weighting mechanism based on the normalized amplitudes of
the selected periods:

H =

k∑
i=1

αi · Trunc
(

Reshape−1(X̂i
2D)

)
(5)

where αi is derived from amplitude-based weights.

C. Loss Function

To enhance the recognition accuracy of the model, in
addition to effectively extracting the temporal and spatial
features of the ECG 12-lead signals, special attention needs
to be paid to the problem of imbalance in the distribution of
the sample categories because the sample imbalance may lead
to the model’s insufficient ability to recognize the minority
class samples during the training process. Therefore, we adopt
the Focal Loss to replace the cross-entropy loss function in
the traditional classification problem to dynamically adjust the
loss weights of different categories of samples to enhance the
model’s ability to discriminate minority samples.

The Focal Loss is proposed to address the extreme im-
balance between foreground and background classes during
training in a one-stage object detection scenario [30]. In this
paper, we use Focal Loss to solve the problem of imbalance



between the samples of each category, and Focal Loss is
defined as:

FL(pt) = −αt(1− pt)
γ log(pt) (6)

The pt is defined:

pt =

{
p, if y = 1,

1− p, otherwise.
(7)

where γ is the focusing factor that controls the attention
given to hard and easy samples; t denotes the category; pt
is the model’s probability of predicting the true category; αt

is the weight of the corresponding category t, indicating the
importance of category t. We set γ to 2 and αt to the inverse
of the number of samples in category t in our experiments.

V. EXPERIMENTS

A. Experimental Setup

Datasets. To be able to evaluate the performance of STEL-
LAR comprehensively, we use two datasets:

PILDE The PILDE dataset consists of electrocardiogram
waveform files stored in the WaveForm Database (WFDB)
format with 16-bit precision. The data has a resolution of 1
V/LSB and a sampling frequency of 500 Hz. The samples were
collected between August 2022 and August 2024. The PILDE
dataset contains 12-lead ECG data from 733 patients, each
with different pacing modalities, categorized into four groups:
93 patient samples based on Biventricular Pacing (BP), 53
samples based on Right Ventricular Septal Pacing (RVSP), 181
samples based on Right Ventricular Apical Pacing (RVAP), and
406 samples based on Left Bundle Branch Pacing (LBPP). The
ECG data used in this study were provided by a collaborating
institution (name anonymized for review purposes). The data
have been anonymized to ensure privacy and ethical approval
was granted by the relevant ethics committee. The data were
used in accordance with ethical guidelines. To address class
imbalance, we split the dataset in an 7:1:2 ratio.

PTB-XL The PTB-XL dataset [31] includes clinical 12-
lead ECGs from over 21,000 patients. There are 5 categories,
including 9528 patients with NORM type, 2538 with MI type,
3008 with STTC, 4492 with CD, and 1864 with HYP. PTB-XL
is also split 7:1:2 to maintain consistency with prior works.
Experimental Details. All experiments were performed on
an NVIDIA A800 GPU. For training, we employ an Adam
optimizer with a learning rate of 1e-4, 100 epochs, and a batch
size set to 35.
Test Benchmarks. To validate the performance of STELLAR,
we have chosen five SOTA methods for comparison, which are
SCDNN [32], convTran [33], ECG-CLF [34], TodyNet [35]
and ShapeFormer [36].

B. Experimental Result

1) Comparison Experiment: Table I and Table II show
the accuracy of different methods on PILDE and PTB-XL.
STELLAR achieves the highest accuracy on two datasets. On
the PILDE dateset, the accuracy of STELLAR improves from

TABLE I
ACCURACY OF DIFFERENT METHODS ON PILDE. BOLD FONT INDICATES

THE BEST ACCURACY.

Methods BP RVSP RVAP LBBP Total

SCDNN-TS 47.69% 60.16% 88.55% 94.71% 84.91%

convTrans 61.23% 66.41% 89.19% 86.92% 82.95%

ECG-CLF 46.46% 78.90% 92.05% 84.50% 81.04%

TodyNet 49.85% 62.50% 87.60% 88.74% 81.79%

ShapeFormer 64.86% 80.00% 87.66% 90.82% 85.62%

STELLAR 80.77% 80.47% 93.64% 93.42% 91.49%

TABLE II
ACCURACY OF DIFFERENT METHODS ON PTB-XL. BOLD FONT

INDICATES THE BEST ACCURACY.

Methods NORM MI STTC CD HYP Total

SCDNN-TS 93.05% 33.98% 55.26% 62.50% 46.56% 70.18%

convTrans 91.18% 41.02% 61.18% 62.08% 61.70% 72.40%

ECG-CLF 95.33% 39.84% 43.42% 72.51% 21.81% 70.32%

TodyNet 90.98% 42.19% 62.17% 65.63% 43.62% 71.75%

ShapeFormer 93.05% 42.19% 59.87% 67.63% 44.68% 72.86%

STELLAR 93.15% 71.09% 72.37% 81.82% 82.98% 84.37%

5.87% to 10.45% compared to the existing SOTA method;
on the PTB-XL Dataset, the accuracy of STELLAR improves
from 11.51% to 14.19% compared to the existing SOTA
method.

On the PILDE dataset, STELLAR maintains classifica-
tion accuracy above 80% on all categories, outperforming
all baseline models across most diagnostic categories. This
demonstrates STELLAR’s ability to effectively capture both
spatial and temporal dependencies in ECG signals, likely
due to its integration of graph-based relational learning and
dynamic time series modeling. While SCDNN-TS slightly
surpasses STELLAR in LBBP, the margin is narrow and
does not offset STELLAR’s superior overall performance.
Compared to transformer-based methods like convTrans and
ShapeFormer, STELLAR shows significantly stronger classifi-
cation capability, suggesting its hybrid structure better handles
complex multivariate physiological patterns in ECG.

On the PTB-XL dataset, STELLAR demonstrates remark-
able generalization by achieving the highest accuracy across
all five classes and the total score. In particular, it significantly
outperforms other models in the more challenging categories
such as MI and STTC, indicating its robustness in detecting
subtle waveform abnormalities. Competing models such as
convTrans and ShapeFormer lag behind, especially in classes
like HYP and CD, where STELLAR shows clear superiority.
This consistent dominance highlights the advantage of com-
bining temporal sequence modeling and relational structure
learning, which likely enables STELLAR to learn richer,
more discriminative representations from long ECG sequences
compared to CNN- or transformer-only architectures.



TABLE III
RESULTS OF ABLATION EXPERIMENT. BOLD FONT INDICATES THE BEST

ACCURACY. UNDERLINED FONT INDICATES THE SECOND BEST. W/O
MEANS WITHOUT. LSC MEANS THE LEAD-HARMONIC SPATIAL

CORRELATOR.

Methods BP RVSP RVAP LBBP Total

w/o LSC +Cross Entropy 75.21% 42.97% 88.55% 93.20% 87.34%

STELLAR+Cross Entropy 71.37% 57.03% 93.96% 92.89% 89.02%

w/o LSC+Focal Loss 82.05% 78.125% 85.53% 93.80% 89.50%

STELLAR+Focal Loss 80.77% 80.47% 93.64% 93.42% 91.49%

2) Ablation Experiment: To validate the effectiveness of the
Lead-harmonic Spatial Correlator (LSC) and Focal Loss, we
conducted ablation experiments on the PILDE dataset. The re-
sults in Table 3 demonstrate clear performance improvements.
Specifically, when using Focal Loss alone (without LSC), we
observe significant gains in BP and RVSP categories compared
to cross-entropy, indicating that Focal Loss is effective in
addressing class imbalance by emphasizing harder samples
and reducing the bias toward dominant classes.

Furthermore, when integrating the Lead-harmonic Spatial
Correlator into the STELLAR model, performance further
improves across most classes. This shows that LSC plays
a crucial role in extracting inter-lead spatial dependencies
that are physiologically meaningful. Traditional convolution or
graph-based models may overlook the harmonic correlations
embedded in ECG signals across leads. By explicitly mod-
eling these lead-wise harmonic relationships, LSC enhances
the spatial coherence of learned features, leading to better
generalization on underrepresented pacing types like RVSP
and BP.

Notably, the combination of LSC and Focal Loss achieves
the highest overall accuracy (91.49%), outperforming all
baselines. This synergy confirms that LSC enhances spatial
feature representation, while Focal Loss improves label-level
optimization. Together, they yield a more robust and class-
aware classification system. These improvements are particu-
larly important for real-world clinical deployment, where data
imbalance and spatially entangled signals are common.

3) Effect of ECG sampling rate and the number of leads: To
verify the effect of the ECG sampling rate and the number of
leads on the accuracy, we performed the experiments on both
datasets. The results in Tables IV and V reveal that both higher
sampling rates and the inclusion of more ECG leads signifi-
cantly contribute to improved model performance. Increasing
the sampling rate from 250Hz to 1000Hz leads to a consistent
boost in classification accuracy on both PILDE and PTB-XL
datasets. This suggests that finer temporal resolution allows
the model to capture more nuanced signal morphologies, such
as pacing spikes or fragmented QRS complexes, which are
vital for accurate diagnosis.

Furthermore, as the number of leads increases from 3 to 12,
the classification accuracy also steadily improves due to two
main factors:

TABLE IV
EFFECT OF ECG SAMPLING RATE ON CLASSIFICATION ACCURACY. BOLD

FONT INDICATES THE BEST ACCURACY WITHIN EACH DATASET.

Dataset
Sampling Frequency (Hz)

250 500 750 1000

PILDE 84.30% 86.56% 88.59% 91.49%

PTB-XL 78.69% 81.43% 83.05% 84.37%

TABLE V
EFFECT OF NUMBER OF ECG LEADS ON CLASSIFICATION ACCURACY.
BOLD FONT INDICATES THE BEST ACCURACY WITHIN EACH DATASET.

Dataset
Number of Leads

3 6 9 12

PILDE 84.52% 85.57% 88.03% 91.49%

PTB-XL 76.34% 79.06% 82.62% 84.37%

1) Broader Information Capture—each lead offers a
unique perspective on the heart’s electrical activity.
More leads allow the model to capture additional spatial
correlations and signal variations, thereby enhancing its
understanding of the ECG and improving accuracy.

2) Stronger Spatial Correlation—as the number of leads
increases, the spatial correlation in the ECG signals
becomes more pronounced, enabling the model to more
effectively capture the relationships between leads, fur-
ther enhancing prediction performance.

VI. CONCLUSION

In conclusion, this study makes a significant contribution
to the interdisciplinary field of artificial intelligence and car-
diac electrophysiology through the introduction of the PILDE
dataset—the first longitudinal 12-lead ECG dataset specifically
designed for pacemaker implantation research. PILDE pro-
vides large-scale, high-quality electrocardiographic recordings,
along with comprehensive clinical annotations.

Building upon PILDE, we propose STELLAR, a novel deep
learning framework incorporating a Spatio-Temporal Lead-
Harmonized Mechanism. Experimental results demonstrate
that STELLAR achieves superior performance in arrhythmia
classification tasks compared to conventional machine learning
methods and state-of-the-art deep learning models, exhibiting
both high accuracy and enhanced interpretability.
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