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High-resolution photos improve the user's photographic experience

Mobile Photography

Low Resolution Photo > High Resolution Photo



Smartphone’ Camera Boost Resolution through Hardware Upgrades

The Moto X30 Pro is the first 200MP phone
launched on 8/11/2022, while most
flagships still use 50MP sensors today.

il

CMOS sensors face limited pixel account Periscope lenses extend our view
due to area constraints without increasing resolution



Single-Frame Super-Resolution (SFSR) with Neural Network

SFSR leverages learned experiences to enhance details in up-sampled images,
but may encounter artifacts or excessive smoothing due to insufficient information.



Multi-frame Super-resolution (MFSR)
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MFSR yields better results than SFSR, because it can restore more information about
the real scene through multiple sampling.



MFSR on mobile devices and its challenges
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Low-accuracy optical flow impacts the quality of MFSR

Optlcal Flow Maps w1th Varymg Error Levels Existing Optical Flow Models
. T TT— 10 5 -
8 ¢
6 s 4 | ¢ SpyNet FlowFormer
4 —_
2 "GC"J 3]
U, S ’LFlowNetX e

How to Design Extremely Accurate and Lightweight Optical Flow
Modules for Mobile 16-fold Super-Resolution Imaging?

Parameter (Mb)

RAFT (SOTA) achieves ~0.5-pixel error,
supporting 4-flod super-resolution

HR image SR results generated using the above optical flow

16-flod Super-Resolution on

Accuracy of optical flow significantly affects
mobile needs <0.25-pixel error

super-resolution imaging results
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Z,Q" Intuition: Enhance optical flow accuracy with an auxiliary modality
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Lens motion yields optical flow
results that negatively correlate

However, steady and regular camera movement is
nearly for common users.

a lightweight NN model



? OIS module can control lens motion with the phone stationary
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‘ gyroscope
Roll
Camera Lens \'JX
An OI|S-supported camera MEMS sensors sense OIS actuator controls
built in the smartphone camera movements lens on the X/Y-plane

Controlling the OIS module enables steady and regular lens

movement for handheld shooting by common users.




Additional Modality : Controlled IMU readings for lens movement

Sine tone wave
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Our proposed multi-modal optical flow estimation module

Modal 1: RAFT[43] | PWCNet[42] | SpyNet[40] | FlowNet[21] | Ours
Visual Feature EPE] 0.33 0.65 4.16 2.27 0.12
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Our model achieves the minimal computational

overhead and best performance (<0.25 pixel)!




M?3Cam system : a lightweight mobile 16x% SR system
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Overview of our designed M3Cam, a lightweight mobile 16 xSR system begin with multi-frame images
based on acoustic injection



Mobile Deployment and “How to use M3Cam”
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Evaluation : Comparative analysis for various RAW-format MFSR systems

Metrics PSNRT SSIMT LPIPS| | Para.#(10%)] Latency(s)] RAM (MB)| onnx.(MB)| Frame#| Power (J)|
BSRT[31] 35.89 0.8812 0.0847 7.06 8.41 721.3 27.1 12 39.535 I
DBSR[4] 35.23 0.8876 0.0989 12.94 3.96 827.2 49.3 14 22.703 I
EBSR[32] 34.96 0.8629 0.0945 9.52 11.58 736 36.7 8 51.068

BIPNet[10] 35.26 0.8603  0.0934 6.67 9.23 753.7 25.6 8 43337 |
_Burstormer(11] | 3488 _ 08610 01248 | 249 _ _ _ _ Na____1 NA_ Na 8 ____NA
Ours 36.49 0.8917 0.0687 2.17 1.39 479.4 9.33 1 9.495
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End-to-end imaging visualization comparison

(a) LR image (b) BSRT (c) DBSR (d) EBSR (e) BIPNet (f) BurstFormer (g) Ours (h) HR image



Evaluation : the on-device SR inference performance

Comparison of computation micro benchmark tests on the test smartphones

Smartphones CPU GPU MEM UX SUM
Xiaomi 11 Pro 177112 | 198164 | 138905 | 167166 | 681347
Redmi K40S 186205 | 172761 | 111705 | 152525 | 623196
Xiaomi Mix 4 171285 | 243559 | 114380 | 117454 | 646678
Xiaomi 10 164215 | 202188 | 108087 | 91243 | 565733
Redmi Note 12 Pro | 147656 | 184272 | 89794 | 134706 | 556428
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Conclusion

We propose a novel multi-modal optical flow estimation module.
We propose M3Cam, a lightweight SR network based on the Swin Transformer.
We implement a prototype of M3Cam and deploy it on various Android smartphones.

M3Cam outperforms other systems in both image quality and inference overhead.
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M3Cam vs OISSR

M3Cam

* OISSR achieves high-quality results (PSNR > 35) only in 4x up-sampling (2x length
and 2x width), while M3CAM delivers high-quality results in 16x up-sampling tasks.



M3Cam vs OISSR
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OISSR M3Cam

* OISSR lacks validation for real-time deployment on mobile devices, whereas
M3CAM successfully implements this capability.
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