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Abstract

In this paper, we propose a novel high-resolution mmWave imag-
ing technique that operates with a small, off-the-shelf mmWave
module and eliminates the need for any mechanical movement, of-
fering a streamlined, portable solution. Our approach tackles two
primary challenges: 1) mmWave commodity hardware is constrained
by a limited number of antennas, limiting imaging resolution, and
2) most wireless imaging algorithms rely on compressive sensing
to overcome the physical constraints, which assumes sparsity — a
condition that may not always apply. To address these challenges,
we first design an optimized mmWave metasurface specifically tai-
lored for high-resolution imaging. This involves deriving a unit cell
pattern that achieves high signal penetration and near-27 phase con-
trol, followed by joint optimization of both the metasurface and the
codebook to further refine the signal quality and imaging resolution.
We further propose a diffusion-based neural network model that
transforms mmWave signals into high-quality images by directly
exploiting the inherent features of target images, providing a robust
alternative to conventional compressive sensing approaches. Our
method encodes mmWave signals into physical representations and
employs conditional generation through stable diffusion, effectively
enhancing image quality. Through comprehensive implementation
and rigorous testbed experiments, we demonstrate the feasibility and
effectiveness of our approach.

CCS Concepts

¢ Human-centered computing — Ubiquitous and mobile com-
puting systems and tools.
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Figure 1: Illustration of MIMSID.
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1 Introduction

Motivation: With the fast development of commercial off-the-shelf
(COTS) mmWave radars and the rising need for fine-grain imaging
in obstructed or privacy-preserving conditions, mmWave imaging
has become an attractive solution.

Traditional mmWave imaging uses beamforming in both azimuth
and elevation dimensions to retrieve reflected signals in each direc-
tion. However, accurate beamforming requires a large antenna array
in both azimuth and elevation dimensions to achieve high angle reso-
lutions (below 1 degree), which is not affordable for COTS mmWave
radars (e.g., MMWCAS-RF-EVM from Texas Instruments with 12
transmitters and 16 receivers can only achieve 1.4 degrees and 18 de-
grees for azimuth and elevation angle resolution, respectively [55]).

To reduce the size of the antenna array, many existing mmWave
imaging methods apply Synthetic Array Radar (SAR) [14, 24, 30,
40, 43, 45, 60] to extend the virtual aperture of mmWave transceiver
arrays for high-resolution imaging. However, SAR-based methods re-
quire guide rails or other scanning approaches to perform mechanical
scanning, resulting in large machinery sizes and potential risks with
movements, such as collisions. [24] applies a rotation SAR with a
compacted size, but still requires machinery rotations. [43] achieves
high-resolution imaging with handheld devices, but requires human
control over handheld devices. SAR-based approaches are hard to
deploy in compacted spaces (e.g., rotary assembly lines [41]) or
unmanned inspection tasks, forcing us to seek a stationary mmWave
imaging solution with a compacted size.

Computational imaging is an interdisciplinary field that combines
imaging hardware with computer algorithms to create novel imaging
systems capable of generating single-shot high-resolution images.
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Compressive sensing is a common technique in computational imag-
ing that captures and reconstructs high-dimensional data with fewer
measurements. While this technique has been widely used to turn
wireless signals into images under limited measurements and in-
sufficient antenna arrays [12], it faces several critical limitations:
1) regarding formulation, it assumes a special structure about im-
ages (e.g., sparse or low-rank). However, these constraints cannot
fully characterize the distribution of real images (e.g., not all im-
ages exhibit these properties, and there may be additional properties
in the real images that are not captured by the sparsity); 2) Exist-
ing algorithms are either optimization-based (e.g., ADMM [2]) or
message-passing-based (e.g., AMP [10]). Optimization-based algo-
rithms may suffer from sub-optimality and require many iterations
to converge, while message-passing-based algorithms require strict
assumptions on sensing matrices and images [1].

Our approach: In this paper, we leverage a stationary COTS mmWave
radar to perform sub-centimeter resolution imaging, which faces
several challenges: 1) The insufficient antenna array limits the reso-
lution in both the azimuth and elevation direction for sub-centimeter
imaging. 2) Real-world images do not always satisfy the sparse
or low-rank assumption required by compressive sensing methods.
Therefore, we propose MIMSID to address the above challenges
by 1) designing a passive mmWave metasurface to optimize the
measurement matrix A and increase imaging resolution, and 2) de-
veloping a conditional diffusion network to reconstruct accurate
images based on target reflection signals.

Expanding phased array: The imaging resolution depends on
the measurement matrix A, which is dictated by the hardware setup
(i.e., the number of TXs and RXs). However, the cost of mmWave
devices increases rapidly with the number of antennas. In addition,
the largest number of antennas is up to 12 TXs x 16 RXs for a COTS
radar, still insufficient for sub-centimeter-level imaging.

Motivated by recent works on expanding phased arrays with meta-
surfaces [12, 13, 35], we design a metasurface-based mmWave imag-
ing system. We use a passive metasurface for its low cost and ease of
deployment. Our design achieves two important properties: 1) low
signal attenuation with wide phase control in a high-frequency band
(77-81 GHz), and 2) jointly optimized passive metasurface phase
map and transmitter codebooks for optimal imaging performance.

Signal-to-image diffusion: To address the limitations of com-
pressive sensing, we design a Sig2lmg Diffusion for accurate image
generation based on several theoretical observations: 1) The power
of diffusion models lies in their unique ability to learn the characteris-
tics of real images and incorporate these characteristics into the gen-
eration process [48]. They are promising to address and overcome
the restricted sparsity assumption. 2) In Sec. 5.2, we establish the
connections between diffusion models and classic message-passing
algorithms, demonstrating their optimality in signal recovery. Un-
like message-passing algorithms, diffusion models automatically
learn the image distribution rather than imposing sparsity or low-
rank assumption, which may not hold in general, thereby further
improving performance. Our conditional diffusion model takes the
measurement matrix A and the target signal r as input and outputs
the resulting image.

Channel estimation: In addition to designing a metasurface-based
mmWave system and an effective inference algorithm, we need to
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get the up-to-date measurement matrix A associated with r since our
system takes paired A and r as inputs. We develop a compressive
sensing algorithm to estimate A using a few known template images
(i.e., solving A based on the known images x and its corresponding
signals r where r = Ax). In this way, we can efficiently adapt to the
changes in the mmWave channel.

System implementation: We implement our system, MIMSID, as
shown in Fig. 1. It first jointly optimizes the passive metasurface
and codewords at the transmitters. Then we deploy the metasur-
face along with the mmWave module in the testbed. We train the
signal-to-image diffusion model to map wireless signals to images
using the training data generated from the simulator based on the
measurement matrix As. Then we apply the diffusion model to infer
an image based on the measured reflection signal of the target and
its corresponding measurement matrix collected from the testbed.

Contribution: Our contributions are as follows:

e We design a novel passive transmissive mmWave metasurface
that significantly enhances imaging performance by jointly opti-
mizing transmitter (TX) codewords and the metasurface’s phase
profile to minimize end-to-end image reconstruction error (Sec. 4).
Our metasurface achieves an impressive phase control range ex-
ceeding 200°, spanning from 21° to —181°, while maintaining a
penetration loss of less than —3dB for double penetration across
‘W-band frequencies (77-81GHz). This innovative design provides
unparalleled capabilities for high-resolution transmissive imaging
in mmWave systems.

e We develop a signal-to-image diffusion model for image recon-
struction. Theoretically, we prove that diffusion models are opti-
mal estimators under mean squared error (MSE), outperforming
traditional formulations such as LASSO in compressive sensing
problems (Sec. 5). Empirically, our diffusion-based approach de-
livers exceptional imaging performance, reducing the root mean
squared error (RMSE) of compressive sensing methods by half.

e We propose a robust and efficient channel estimation and recov-
ery algorithm to address the challenges of mmWave channel
variability over time and across diverse environments (Sec. 6). By
mitigating channel dynamics, our method ensures consistent and
reliable imaging performance, even in non-stationary conditions.

e We implement MIMSID and validate its performance through
extensive experiments and testbed evaluations (Sec. 7 and 8).
Our results demonstrate that the optimized metasurface reduces
RMSE by up to 66% compared to configurations without a meta-
surface, while our diffusion model achieves a 62.5% RMSE re-
duction over ADMM-based reconstruction methods. Combined,
MIMSID achieves a median RMSE of 0.061 on a 20cm X 20cm
imaging plane with 1cm resolution.

2 Related Work
2.1 mmWave Imaging

mmWave imaging has attracted great attention for its high range
resolution, penetration ability, and capability to function in optically
occluded conditions, thus being studied extensively for autonomous
driving [14, 17], object detection [23, 40], and gesture recogni-
tion [62]. In addition, mmWave is non-ionizing, making mmWave
imaging favorable for human-involved applications, such as security
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checks [45] and body examinations [30]. Current mmWave imaging
methods often apply Synthetic Array Radar (SAR) [14, 24, 30, 40,
45, 60] to extend the virtual aperture for high-resolution imaging
but require mechanical scanning and large machinery sizes, making
them hard to deploy in compacted spaces or unmanned inspection
tasks. [24] applies a rotation SAR with a compacted size, but still
requires machinery rotations, introducing extra risks of mechanical
failures and power assumptions, hindering the potential of long-time
operations. [43] achieves high-resolution imaging with handheld de-
vices, but requires human control over handheld devices. Moreover,
it applies Generative Adversarial Nets (GAN) to reconstruct high-
resolution images, which are prone to model collapse. Several works
apply metasurfaces to expand imaging aperture, but function in much
lower operating frequencies, resulting in lower resolutions [15, 18].

Compared to the time- and space-consuming nature of SAR, In-
verse Synthetic Aperture Radar (ISAR) leverages the object’s move-
ment and synthesize large aperture with the relative movements
between the transceivers and the object, therefore is preferred in
compact scenarios where the radar is static and the objects are mov-
ing uniformly, such as in tire-wear sensing [37] and assembly-line
sensing [21, 36, 58]. However, ISAR requires knowing the target’s
speed or using other sensors to track its location, and is not suitable
for imaging static objects or objects with arbitrary movement (e.g.,
users passing through security checks).

Compared with existing work, MIMSID advances state-of-the-art
by developing a diffusion-based imaging algorithm and jointly opti-
mizing a passive mmWave metasurface and codebooks. By combin-
ing advanced neural networks with hardware optimization, MIMSID
delivers a compact, high-resolution imaging system without requir-
ing large antenna arrays or mechanical movement. This innovation
not only improves imaging performance but also improves practical-
ity, cost-efficiency, and robustness in the real world. environments.

2.2 mmWave Metasurface

Programmable metasurface. Programmable metasurfaces can
change their transmissive or reflective properties in real-time by
altering the voltage applied to unit cells. The unit cells are active
elements respondent to voltage changes, such as positive intrinsic-
negative (PIN) diodes [11, 19, 20], varactor diodes [7, 27, 52], liquid
crystals [56], and RF switches [6, 51]. While programmable metasur-
faces are more flexible and can be adjusted in real-time, the cost and
fabrication difficulty of the active unit cells will increase dramatically
as the design frequency increases and the corresponding wavelength
shrinks. Thus, in our working frequency band of 77 — 81GHz, we
choose a PCB-printed passive metasurface to enable phase array
expansion and single-shot mmWave imaging.

Passive metasurface. Passive metasurfaces are composed of pas-
sive unit cells that encode specific phase or amplitude-altering pro-
files [34, 38]. The unit cells often compose metallic patterns and di-
electric layers, forming virtual dipoles responding to EM waves. Pas-
sive metasurfaces are cost- and power-efficient and easy to manufac-
ture compared to active metasurfaces [4, 7, 11, 19, 20, 27], and thus
are favored in many applications. Passive unit cells resonate at spe-
cific frequency bands depending on their physical structures and pe-
riod sizes, enabling reflection [28], transmission [25, 33, 35, 50, 53],
and refraction [32, 44, 57] functionalities. [28] proposes a reflective
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metasurface design with high reflectivity and near 2/pi phase con-
trol to improve mmWave network coverage. [32] presents refracting
metasurfaces using phase gradient unit cells operating at 83GHz.
Reflective and refracting metasurfaces need to be mounted away
from the transceivers to ensure the signals reflected from the sur-
faces reach the target, increasing the size and deployment. Moreover,
reflective metasurfaces involve LOS and reflective paths, greatly
increasing channel modeling complexity. Current studies on trans-
missive metasurfaces are mostly below the U band (40G — 60GHz).
[35] enhances Low Earth Orbit (LEO) satellite communication via
stacked transmissive metasurfaces. However, there is great poten-
tial in using transmissive metasurfaces in the W-band frequencies
(70 — 110GH?z), encouraging us to seek a unit-cell design with a wide
phase shifting range and low attenuation in the popular 77 — 81GHz
automotive radar frequency band.

2.3 Diffusion Models for Image Generation

Traditional mmwave imaging methods with static radars are based
on point detections with point-cloud measurements or computational
photography methods that solve linear inverse problems. Point-cloud-
based methods scan the objects through multi-directional measure-
ments to reconstruct images from position-wise reflection signals.
[62] uses a commodity WiFi antenna array with super-resolution
algorithms to capture coarse human-body parts. [17] applies a CNN
model to generate super-resolution images of vehicles from coarse
point-cloud measurements. However, these Point-cloud-based meth-
ods are task-specific and low in resolution (above 10cm resolution).
The linear inverse problem takes the single-shot measurement y
of the object x and solves for y = Ax + €, where € is the random
noise. However, the LASSO-based ADMM solver is sub-optimal [2]
while message-passing-based solvers (e.g., AMP [10]) require strict
assumptions on the sensing matrix and do not converge for general
sensing matrices.

The recent development in diffusion models (DM) has drawn
attention in various application fields for imaging generations [8, 22].
DMs progressively refine the image, employing an encoder-decoder
network in each step, while traditional image generation models
such as Generative Adversarial Networks (GANs) [16, 43] suffer
from mode collapse and training instability, and often underperform
DMs [9]. In more recent works, DMs are also used to generate RF
signals for data expansion [5].

With the continuous development of DMs, numerous works have
emerged interest in solving noisy linear inverse problems, i.e., y =
Ax + € problems, with generative models [29]. [3] develops a Monte-
Carlo-guided diffusion model to solve the ill-posed linear inverse
problems. [22] uses DMs for solving linear inverse problems in
the medical imaging domain, such as image-to-image translation,
reconstruction, denoising, and anomaly detection. Nevertheless, we
prove for the first time that conditional diffusion models are optimal
estimators for linear inverse problems and develop a novel signal-to-
image diffusion model that translates the reflected mmwave signals
into corresponding object images.

3 mmWave Imaging Problem

Wireless imaging can be cast as solving the optimization problem
min|Ax — r|, where we need to reconstruct an image x (flattened to
X
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N x 1) given a known M X N measurement matrix A (e.g., wireless
channel matrix) and a known M X 1 received signal r. M is the
channel feature length and N is the total channel number. Each
element in x represents the signal fraction reflected at that position.
mmWave uses Frequency Modulated Continuous Waves (FMCW)
for imaging. Due to the limited sampling rate, only mixed signals
(i.e., TX reference signals X RX received signals after low-pass
filters) instead of raw signals are available. According to [46], under
slow modulation conditions, mixed signals are equivalent to raw
signals. Therefore the above formulation applies to mixed signals.
The imaging reconstruction accuracy depends on the measure-
ment matrix A. Increasing A’s rank enhances the accuracy of image
reconstruction, which depends on the number of transmitter and
receiver antennas and/or the effective bandwidth for measurements.
However, increasing the number of antennas is not only costly but
also limited by an existing upper bound on antenna numbers avail-
able in COTS mmWave modules. In addition, the effective band-
width is also limited by the physical design of the mmWave module.
Next, we will introduce our metasurface optimized for mmWave
imaging. Then we will explain the intuition behind replacing tradi-
tional compressive sensing with diffusion networks and introduce
our signal-to-image diffusion model for imaging reconstruction.

4 Metasurface Design
4.1 Background on mmWave Metasurface

Huygens Metasurfaces (HMS) are composed of sub-wave-length
structures acting as arrays of dipole components that manipulate
the phase and amplitude of the transmitted or reflected waves, and
therefore can be seen as antenna elements to form a massive phased
array. HMS can significantly enhance the degree of freedom in both
spatial and frequency domains and improve the complexity of signal
channels. This physical enhancement in signal diversity cannot be
achieved by algorithms alone. The system cannot reliably reconstruct
missing details if the raw data is insufficient or lacks the necessary
information. This insight encourages us to design a metasurface to
increase imaging resolution and improve imaging performance. A
metasurface design consists of (i) a microscopic design to determine
the structure of unit cells, and (ii) a macroscopic design to determine
the entire metasurface, including various parameters associated with
each unit cell at each position to achieve the desired phase map.

4.2 Metasurface-Based mmWave Imaging Problem
Formulation

Consider placing an mmWave metasurface between the mmWave
module and the target. The mmWave module transmits signals to-
ward a target and receives the reflected signals, as shown in Fig. 2.
Let H; (i, j) denote the mmWave channel from the i-th mmWave
transmitter antenna to the j-th metasurface cell. Similarly, we have
Hy, r(j, k) denote the channel from the j-th metasurface cell to the
k-th mmWave receiver antenna. Meanwhile, we define Hp, o (j, k)
as the channel from the j-th metasurface cell to the k-th grid in the
imaging area, and Hy, , (k, j) as the channel from the k-th grid in the
imaging area to the j-th metasurface cell. w denotes the transmitters’
beamforming codewords for the design frequency.

The mmWave signal goes through the transmitter antennas’ beam-
forming, the metasurface’s modification, and arrives at the target,
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Figure 2: Channel modeling for mmWave imaging with meta-
surface.

where it is reflected and goes through the metasurface in the reverse
direction. It finally arrives at the mmWave receiver antennas and
goes through their receiving processing. Let r denote the received
signal at the receiver. We have:

r=Hpu,M-Hymx - HyoM - Hy yw +n, (1)

where M is the modification to the signals introduced by the metasur-
face, w is the codeword (or the initial phase shift) of the transmitter,
n is the random noise, and - denotes the dot product. A dot prod-
uct captures the interactions between the metasurface M and the
incoming signal because each metasurface cell changes the signals
independently regardless of the signal’s path. For the same reason, a
dot product is used to model the impact of an object on the incoming
signal.
Through simplification, Eq. 1 can be reduced to as follows:

rm = Hp, rdiag(M)Hy mdiag(Hp oM - Hy pw)x +n
=Am(M,w)x +n, 2)

where r, is the combined reflection signal at the receiver, A, (M, w)
is the measurement matrix for the mixed signal channels. Note that
Apm(M,w) is solely determined by the relative positions between the
metasurface, the transceiver, and the predefined virtual image plane,
and thus is independent of real-world environments.

To infer an image of our target x, we search for x that satisfies
the above constraints. All the other variables in Eq. 2 are known:
the passive metasurface M is fixed and known in advance, and
the channel matrices, Hy ., Hm,o0, Ho,m, Hm,r, can be calibrated
in advance or derived based on the relative position among the
transceivers, metasurface M, and the imaging area.

To support high-resolution imaging reconstruction, we need A to
have a high rank. Without a metasurface, the rank of A is determined
by the number of frequencies used for measurements and the number
of transmitter and receiver antennas. Assuming we use a sufficient
number of frequencies (or sufficient bandwidth as for FMCW chirps),
the number of antennas puts the upper bound on A’s rank. Since it is
expensive to use a large number of antennas in terms of hardware
cost, power, and computation, we develop a passive metasurface
to expand to the phased array and enhance the performance of the
mmWave imaging system.

4.3 Microscopic design

4.3.1 Challenges. The unit cells of the HMS contain metallic
patterns with rings, lines, and gaps serving as inductance and capaci-
tance. The metallic patterns and dielectric intermediates form dipole
units that excite electromagnetic resonance and achieve efficient
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transmission or reflection. Existing works on passive mmWave meta-
surfaces focus on reflective metasurfaces or narrow-band metasur-
faces. While achieving high reflectivity is easier by adding a metal
plate as the last layer [28], achieving high transmittance is more
challenging. Without careful design, metasurfaces can significantly
attenuate the signals going through them. Moreover, the large band-
width of mmWave radars challenges us to achieve high transmittance
across a wide range of frequency bands (e.g., 4GHz). While trans-
missive metasurfaces have been studied extensively below 40GHz,
few works exist on transmissive metasurfaces at W-band frequencies
(75- 110GHz). The small wavelength in W-band mmWave makes it
challenging to design and manufacture the metasurface.

HMS cells show strong phase change responses around their reso-
nant frequencies and tend to reverse the transmittance responses (i.e.,
a normally reflective metal pattern shows transmissive behavior, and
vice versa). To achieve effective phase manipulation while maintain-
ing high transmittance at a wide frequency range, the metasurface
needs to show electromagnetic resonance across a broad frequency
band. This challenges us to adopt low-Q resonance unit cells at
‘W-band design frequencies.

4.3.2 Unit cell geometry. We redesign a rectangular pattern
with low-frequency wide band resonance responses (low-Q reso-
nance) [25] to achieve high transmittance and wide phase manip-
ulation range at 77 — 81GHz, as shown in Fig. 3. The unit cell
is composed of a single dielectric layer sandwiched between two
rectangular ambulatory plane metal layers. Each metallic pattern
comprises an outer square ring and an inner rectangle patch. The
period of meta-cells, denoted as p, is set to 1.5mm, which is around
half the wavelength of the design frequency 79GHz. s is the width
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of the outer ring, and h = 0.25mm is the thickness of the dielectric
substrate. Wyop portom a0d Leop pottom are the widths and lengths of
the rectangle patches, respectively.

The inductance and capacitance of the unit cell can be controlled
by altering the width and lengths of the metallic structure, resulting
in changes in phase and transmittance response. However, the sub-
wavelength sizes of the unit cells significantly limit the design space
to achieve an abundant variety of phase modulations. To achieve a
larger design space in limited parameter selection ranges, we add
more degrees of freedom by adjusting the width of the outer ring
in addition to altering the shapes of the inner rectangles. At last,
a wide range of phase modulation can be achieved by carefully
selecting s, Wyop botrom> a0d Liop pottom Pairs while maintaining
high transmittance, forming a discrete collection of phase change
responses for wavefront manipulation.

We use High-Frequency Structure Simulation (HFSS) to select
effective geometry structures and determine the relationship between
structural hyperparameters and phase modulation angles. We use
the transmission parameter S21 as the frequency response of the
meta-cell, where 2521 represents the phase modulation response
and | S21 | represents the transmittance of the meta-cell. We scan
Wrop.bottom a0d Liop portom from 0.1mm to 1.3mm, and s from
0.05mm to 0.1mm, while other hyperparameters are fixed. The trans-
mittance response across 77 — 81GHz is shown in Fig. 4, where 7
selected unit cells are shown at random for clear representation. The
phase response for 7 selected unit cells across the 77 — 81GHz fre-
quency band and at the design frequency 79GHz is shown in Fig. 5.
Our results show our single-layer meta-cells can support a phase
modulation range of over 200 degrees with a transmission coeffi-
cient above —2.5dB at the 77 — 81GHz frequency band and above
—1.5dB in our efficient working bandwidth(i.e., 3800 MHz starting
from 77GHz). Note that all unit cells present no significant peaks or
valleys in transmittance across 77 — 81GHz, indicating their low-Q
resonance characteristics [25].

Although the phase response of each cell changes as the incident-
wave frequency alters, the phase response change of each cell is
approximately linear, and all cells share a similar slope in phase
changes. As we only use the relevant phase changes (i.e., AzS21)
to construct the phase map, we only care about the phase response
span of all unit cells under the same incident-wave frequency. The
transmission property is identical in both ways (521 and 512), dou-
bling the phase modulation ability and maintaining a penetration
loss above —3dB. As shown in Fig. 5, the geometric parameter pairs
and the transmissive phase responses are in one-to-one correspon-
dence, indicating a mapping between geometry structures and phase
response patterns. We select meta-cell parameters corresponding
to phase response from —180° to 20° in 5° interval. These meta-
cells are arranged to form a phase map to manipulate transmissive
wavefront, as described in Sec. 4.4.

4.4 Macroscopic Design

Our goal for the metasurface is to enhance imaging reconstruction.
According to Sec. 4.2, while other parameters are determined by
positions, we optimize the metasurface phase map M and trans-
mitter’s codewords w to realize this goal. We apply an end-to-end
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optimization framework to jointly optimize a signal-to-image diffu-
sion network (described in Sec. 5) and the measurement matrix A,
as shown in Fig. 6.

The measurement matrix is determined by the metasurface phased
map M at the design frequency of 79GHz and the phase offset code-
book w for the transceivers. By iteratively optimizing imaging per-
formance and the measurement matrix, we can obtain the optimized
metasurface phase map Mo and its corresponding codebook wop,
which greatly increases channel diversity and enhances imaging
reconstruction performance.

We first initialize the measurement matrix A, by randomly ini-
tializing M and w. To ensure faster convergence and better A,
construction, we minimize the coherence of the matrix to increase
the rank of A,

min [ = Z Cij 3)
i#j

where Cjj = Am(M, wi)TAm(M,w 7) computes the correlation be-
tween the i-th and j-th rows in the measurement matrix. As A, is
a function of w and M, the final recovered image is a function of
w, M, and 0, where 0 = {01, 0, 03} is the trainable parameters of our
Sig2Img Diffusion introduced in Sec. 5.3. We adopt the following
end-to-end loss to optimize these parameters:

6(Mw,0) = Z i = % (M. w, O)113,

N IDI
where x; is the ground-truth image from the training dataset D
described in Sec. 5.2 consisting of 24900 images, X; is the estimated
image, and N is the number of grids in the imaging plane. M is
restricted into the phase modulation range described in Sec. 4.3.2.

We alternately optimize the metasurface parameters (i.e., A,; and
w) and the diffusion model. The first step optimizes M and w and
fixes 6 while the second step optimizes ¢ and fixes M and w. The
two steps iterate until convergence. The optimization is done by
backpropagation in Pytorch.

To meet the unit-cell design and physical constraints, the opti-
mized phase map My, is mapped to the nearest feasible set from
the selection described in Sec. 4.3.2, and wyy; is discretized into a
6-bit phase shifting profile to apply to the mmWave module.

5 Diffusion Models for Image Reconstruction
5.1 Background on Diffusion Models

Image generation has been a hot topic due to its diverse applications.
Generative Adversarial Networks (GANs) [16, 43] gained popularity
for their impressive capabilities in generating high-quality images.
However, they are prone to model collapse (i.e., generating less
diverse samples, and the training is highly unstable).

Yida Wang, et al.

Recently, Diffusion Models (DMs) have broken the long-standing
dominance of GANSs [9] as they elegantly addressed the above issues.
DMs are inspired by the diffusion process in statistical physics and
are characterized by forward and reverse processes. The forward
process, occurring over a time interval from 0 to T, incrementally
transforms an image into Gaussian noise by following the gradient
of the image distribution. Let x; represent the state of the data
point at time t (xo as the ground-truth image); the forward process
systematically introduces noise to the data by following a predefined
noise schedule given by x; = +/a;xo + or€;, where a; € [0,1] is
monotonically decreasing with t, o; = 1 — ;. In contrast, the
reverse process, from T back to 0, reconstructs the image from the
noise. The reverse process is obtained by the equation:

Xp—1 = ,/;—tlx +0; (e — 1)V, log ps(x;) “4)

where p; is the distribution of x4, A; = 5 log( 1“’ ), h=2A—-1— As.

In statistical physics, the expression of Vi, log p:(x;) (i.e., score
function) is obtained in closed form while this is intractable for im-
ages. As a result, the key to DM is to use neural networks to approx-
imate the score function, i.e., to train an NN such that NN(x;, t) ~
-0t Vx, log p:(x;) = €; [48]. During inference, DMs start x7 with
Gaussian noise, executing Eq (4) by replacing the score function
with the neural network. The generated image is xp.

5.2 Image Reconstruction: From Compressive
Sensing to Conditional Diffusion

In this subsection, we discuss the rationale behind using diffusion for
image reconstruction. The key observation is that DMs are optimal in
terms of MSE while traditional formulations like LASSO are not. We
first follow [31] to introduce the compressive sensing methods from
a probability perspective. The conditional probability of measure-
ment is a Gaussian distribution, i.e., p(r|x) ~ exp(—— |r — Ax||§).
The joint probability is p(x,r) = p(r|x)po(x), where po(x) is the
distribution of images. Then we consider a minimum mean square
error estimator (MMSE) to recover x from r:

x" = argmin E[[|% - x[|3], x ~ p(x|r) = E[x]

_/xP(xIr)dx— () dx P(") /xP(le)po(x)dx
5)

By taking po(x) = exp(—Al|x||1) and replacing the integral with the
maximum operation, one may recover the classic formulation of
LASSO:

p(x|r)po(x)
p(r)

1
= argmax exp (——2 ||r—Ax||§) exp(—Allxll1) (6)
x 20

x* = argmaxp(x|r) = argmax = argmaxp (x|r)po(x)
x x x

1
= argmin ~||r — Ax||Z + Ao?| x]|;.
x 2
Due to the replacement of mean by max, LASSO is not optimal

in MSE even if exp(—A||x]||1) is the ground-truth data distribution
(Fig. 2 of [31]). To solve Eq. 5, the most effective approaches are
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Figure 7: Comparison of the proposed diffusion methods and conventional compressive sensing methods.

approximate message passing [1]:
1
Yr =Xt —th§||r—Axt||§+c; =Xt +AH(Ax—r) +c;

xt-1 =1t (ye), 7
where c; is Onsager correction term [10] and the thresholding func-
tion is given by

ne(yo) = / x exp (—%ux - ytn%)po(x)dx, ®)
20
For sparse problems (i.e., po(x) = exp(—A|x|[1), it is the soft-
thresholding operator [10], i.e., 5 (y;) = sign(y;) - max(|y;| —As0¢).
One important connection between the optimal message passing
methods Eq. 7 and diffusion models are given in the following
proposition and the derivation follows Eq. 11 - Eq. 16 of [61] and
compared in Fig. 7.

PROPOSITION 5.1. Given y; = +Joarx* + or€;, then we have

nt(ye) = \/LoT, (yt+a?th log p: (x¢)), where \Jaz, oy and Vi, log ps (x;)

are defined in Eq. 4.

As discussed in the previous subsection, the key to diffusion is to
use a neural network to approximate Vy, log p; (x;). Therefore, in
this paper, we use diffusion models to approximate 7; (y;). We will
not lose the optimality as the additional identity mapping and scaling
by 1/+/a; is easy to learn. Specifically, we initialize the image as
Gaussian noise and use the following updates mimicking Eq. 7:

y; = Signal_NN(A,r)
x¢—1 = Diff_NN(x;,y;) 9

where Signal_NN is a neural network for handling the received sig-
nal r under channel matrix A which encodes the signal inputs A and
r into representation embeddings and Diff NN is a diffusion neural
network conditioned by the embeddings to execute Eq. 4. In the next
subsection, we will discuss the neural architecture of Signal NN
and Diff_NN, as well as the training method in detail. We name our
algorithm Eq. 9 as Sig2Img Diffusion. Our Sig2lmg Diffusion aims
at learning the intrinsic relationship between the received signal r
and channel matrix A and performs image reconstruction under the
guidance of received signals.

5.3 Implementation of Sig2Img Diffusion

Training data generation. The training of diffusion models typi-
cally requires a large amount of paired data consisting of the images
and received signals, which is not always available in mmWave sens-
ing. Instead, we propose to synthesize image-signal data pairs using
the channel matrix A € RNsamplesX400 \yhere Nsamples is the num-
ber of signal sample points in each channel. Specifically, we generate
4900 ground-truth images according to our use cases (e.g., weapon

detection, pipeline speculation, digits, and alphabets) together with
20, 000 images in Fashion-MINST [59] to construct the image dataset
Dimage- For each image x; € Djmyge, We obtain the corresponding
signal r; = A;x;, where A; € {Ak}f’:1 is drawn from a simulated
A set with various channel setups. As our Sig2/mg Diffusion takes
the received signal r and the corresponding channel matrix A pairs
as inputs, the synthetic dataset consists of each signal-image pair
D = {x, (rl-,A,-)}fi;’OO, where the received signal r; € RNsamples
the corresponding channel matrix A; € RNsampies X400 3 the image
is 20 X 20, i.e., x; € {0,1}490,

The neural architecture of our signal-to-image DM is built on a
seminal text-to-image DM named Stable Diffusion [42]. In stable
diffusion, the text is first encoded as a feature y;. Then a UNet is
employed to take y; and noisy image x; as input and output x;_1.

Signal_NN. Signal_NN extracts the features of received signals
r and their corresponding channel matrices A, aiming to learn the
general relationship between r and A. Intuitively, if the signal fea-
tures are more similar to the corresponding image features, it will
be easier for the diffusion models to recover the image. Therefore,
we first align the representation of the image and the corresponding
signal. We compress the representation of A using a 2-layer 1D CNN
and concatenate it with r to construct a paired signal vector rp. We
employ a 1-layer 1D Transformer and a 2-layer 2D Transformer to
respectively obtain the features of paired signals and images:

y; s = ID-Transformerg, (rp;), 1y = 2D-Transformerg, (x;),

(10)
where y;5,y;1 € R0 9, and 6, denote the weights of neural
networks. We adopt the CLIP loss (i.e., Fig. 3 in [39]) as the loss
function. It encourages y; s = y; s if i = j and decreases the sim-
ilarity between y; s and y;; for i # j. The weights of 1D and
2D-Transformer are trained by backpropagating the loss function to
0; and 0, with AdamW optimizer [26].

Diff NN. Diff NN takes the features of the signal pair rp and
the noisy image x; as the input and outputs the denoised image
x;—1. For each image in training dataset (x;, rp;) € D, it first goes
through the forward diffusion process

Xit = \Varxi + oré€r. (11

As the input and output dimensions are identical to stable diffusion,

we adopt the diffusion network in stable diffusion (i.e., UNet) as the
backbone of Diff NN:

é; 1 (rpi, xit) = UNetg, (1D-Transformerg, (rp;i), Xi ). (12)

where 05 is the UNet’s weights. The training loss is to minimize the
prediction error given by the UNet:

D D e (rpixie) - el (13)

i€]D| 1
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The weights of UNet are learned by backpropagating the loss func-
tion to 63 with the AdamW optimizer. The training is finished on
one RTX 3060 desktop in 9 hours. During the inference, given a new
paired signal vector rp, we initialize x7 with Gaussian noise. The
image is recovered by the inverse diffusion process, given by

[ar— R
Xp-1 = ;—tlxt —or(ef — )& (rp, x1). (14)

The recovered image from the signal is xg.

6 Efficient Channel Updating

MIMSID requires paired A and r as the inputs of Sig2Img Diffusion.
However, the channels in A may change over time and in different
environments. Therefore, A requires periodical updating. A natural
way to update the channels is to measure the reflected channel at
each point in the imaging plane (i.e., recalibration). To reduce the
measurement overhead, we develop a compressive sensing method
using a few template images to recover updated A.

Let X € RM4%k denote k (k = 30 in experiments) flattened
template images of 12 X 12, which are known in advance. We place
each template image at the target plane and measure the received
mmWave signal. Our goal is to infer the measurement matrix A
(or its change AA) based on the known template images x and
received signals r, where r = Ax. This problem is massively under-
constrained when the number of template images is small.

We need to leverage the special structure in the measurement
matrix. Compressive sensing typically assumes the unknowns are
sparse or low-ranked. Carefully examining the distribution of eigen-
values in the channel matrix shows that A and AA are neither low
rank nor sparse. For example, as shown in Fig. 8, it takes 33 eigen-
values (23% eigenvalues) to account for 90% of the energy of AA
with a 144 measurement matrix (i.e., 12 X 12 image plane).

Inspired by [49], we use the spectral profile as the regularization
term. Instead of enforcing a strict low-rank condition, we use a given
distribution of spectral profile as the input. This is a more flexible
constraint and can accommodate different types of distributions.
Specifically, we formulate the problem as follows:

1
min 5||r—Ax||§+1(A,P). (15)

Here, I(A, P) denotes the indicator function, and I(A,P) = 0 if
the new measurement A satisfies the spectral profile P. Otherwise
I(A, P) = co. We use the standard ADMM algorithm [49] to obtain

Figure 9: Photograph of the fabricated prototype.
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the solutions (with the index from T to 0). The updates are given by

Apq = (Zt - N;/p +rxT) (xxT +D74

1
Z;—1 = Rescaling SVD (—Nt + At_l) , (16)
u

Ni-1= Nt + p(As-1 = Zt-1),

where Z;, N; are auxiliary variables, and Rescaling SVD is Algo-
rithm 1 in [49]. The above algorithm is general: we can apply it to
estimate A or AA (i.e., the change in A). Estimating AA can be more
efficient than estimating A if the change is small.

7 Prototype Implementation
7.1 Experimental Setup

Our system prototype is shown in Fig. 9. Our experimental setup
consists of an mmWave radar module as FMCW transceivers, a
transmissive metasurface, and a 3D-printed grid as the image plane.
The metasurface is placed 10cm away from the transceiver board,
with the centers of the metasurface and the transceiver array aligned.
The passive static metasurface is easy to deploy in front of the radar,
minimizing the risk of misalignment between the metasurface and
the transceiver.

We use a commodity mmWave radar evaluation module MMWCAS-
RF-EVM (Texas Instruments), which contains four cascaded AWR2243
FMCW transceiver chips and has 12 TXs and 16 RXs, forming a 192-
channel virtual transceiver array. The TXs transmit FMCW chirps
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Figure 13: Effect of different design components on the imaging system.

with a slope of 95MHz/us and a bandwidth of 3800MHz, starting
from 77GHz. The RXs take 512 samples with a sampling rate of
20MHz in each chirp. Each TX transmits 6 unique chirps determined
by the codewords in a Multi-Input-Multi-Output (MIMO) manner,
forming a unique chirp profile of 6 chirps per transmit loop, which
takes 0.24ms to transmit.

For imaging, we assume the target lies at a pre-defined image
plane consisting of 2020 grids, where each grid occupies 1cmXx1cm.
For ease of constructing various target shapes, we use small stainless
steel cubes with an edge length 1cm as image pixels. Unless stated
otherwise, the image plane is placed 30cm away from the transceiver
board and uses 1cm resolution.

We perform a calibration process to obtain the mixed-signal mea-
surement matrix following the modeling in Section 3. The calibration
process constructs the measurement matrix by measuring the reflec-
tive signal responses of each image plane pixel. This calibration
process can be automated using a 2D electric-controlled guide rail or
a robot arm. We disable the boot-time calibrations of the mmWave
radar to avoid random amplitude and phase jumping between module
reboots [54].

7.2 Metasurface Fabrication

The metasurface is fabricated using standard photolithographic tech-
niques on Rogers RO3003 laminates. RO3003 laminates offer excel-
lent stability of low dielectric constant (Dk) under 77GHz mmWave
radar frequencies, with a dielectric constant of Dk = 3+0.04 and loss
tangent of Df = 0.001.The metasurface is composed of 80 X 80 unit
cells and occupies 13cm X 13cm. The phase profile of the metasurface
is obtained via end-to-end optimization described in Section 4.4 and
shown in Fig. 10. The cost of our metasurface is approximately $275.
With mass production, the cost could be reduced significantly (i.e.,
$0.04 each cell).

7.3 Signal Processing and Model Training

Real-signal processing: The received signals from the targets re-
quire signal processing to obtain representative features. We first
convert the received signals to the frequency domain to extract
range-related information. We perform range gating (e.g., the dis-
tance 0-1m) to exclude the reflection from far objects. Our system
periodically (e.g., every hour) collects a background signal when
there is no object to subtract the background interference. Then we
detect the peak energy within the range of interest to locate the target.
Since the imperfect hardware and near-field reflection will disperse
the reflection to its adjacent range bins, we use multiple range bins
near the imaging plane for imaging.

Diffusion model training: We train the signal-to-image diffusion
model using synthesized training data as described in Section 5.3.
The full training process takes 9 hours on one RTX 3060 desktop.

Note that full training is done only once, and fine-tuning with fewer
updated training samples can be done in 30 minutes.

Model inference: For model inference, we use the Denoising Dif-
fusion Implicit Model (DDIM) [47] for skip sampling and fast in-
ference. We tested the computational cost of model inference on
an RTX 3060 desktop. The average inference time of our model is
approximately 0.2 s per image for 20 x 20 pixel images.

8 Evaluation
8.1 Evaluation Methodology

Performance metric. The imaging performance of our system is
measured via Root Mean Square Error (RMSE), which is defined as
RMSE = +/(est — gt)%, where est is the estimated image and gt is the
corresponding ground truth. Empirically, we consider a high-quality
reconstruction performance to have RMSE<0.1 [12].

Baseline schemes. We evaluate the effectiveness of our imaging
system by comparing 4 baseline setup schemes, as shown in Fig. 11,
which are stated as follows. (a) Imaging system with random beam-
forming codewords and no metasurface. (b) Imaging system with
optimized codewords and no metasurface. (c) Imaging system with
optimized codewords and a metasurface with random phase pro-
file. (d) Imaging system with the jointly optimized codewords and
metasurface.

8.2 Overall Performance

Fig. 11 shows the Cumulative Distribution Function (CDF) of the
RMSE of 4 schemes: (a) - (d). Fig. 12 shows some example im-
ages estimated using the 4 schemes. It is evident that the imaging
system with jointly optimized codewords and metasurface (setup
(d)) performs best, achieving a median RMSE of 0.0608. In con-
trast, without optimized codewords or the metasurface (setup (a)),
one cannot generate any reasonable image. Scheme (d) outperforms
scheme (a)-(c) in reducing RMSE by 72%, 66%, and 36.5%, respec-
tively. Note that even a random metasurface (setup (c)) can greatly
improve our system’s performance, suggesting the benefit of meta-
surface in increasing the virtual phase array size and diversifying the
beam patterns.

8.3 Microbenchmarks

In this section, we evaluate the impact of various design parameters
under the optimal setup scheme (scheme (d)). Unless otherwise
stated, the default system parameters are referred to those described
in Sec. 7.1.

Vary valid FMCW bandwidth. The valid FMCW bandwidth is the

fraction of bandwidth that can be sampled by the mmWave module in

BrotarSampleapc
trampTADC

is the total bandwidth of the FMCW chirp, Samplespc is the number
of samples captured by ADC, frgmp is the chirp duration, and rapc

ammWave chirp, defined as B, ;4 = , where B ;41
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is the ADC sampling rate. The valid bandwidth determines the range
resolution of the mmWave radar and hence affects the performance
of our imaging system. In this work, we fix tygmp = 40ps and
rapc = 20MHz as described in Sec. 7.1, and evaluate the impact of
various total chirp bandwidths and ADC samples.

Vary total bandwidth. Fig. 13(a) shows the impact of different
total chirp bandwidths on the imaging performance. The median
RMSE gradually decreases as the chirp bandwidth increases, from
0.125 with 1GHz bandwidth to 0.06 with 4GHz bandwidth. This ob-
servation encourages us to exploit the full 4GHz bandwidth provided
by the radar module to achieve good performance.

Vary ADC samples. Fig. 13(b) shows the impact of different ADC
samples. The median MSE declines from 0.125 with 64 samples per
chirp to 0.06 with 512 samples per chirp. Similar to total chirp band-
width, more ADC samples per chirp result in higher valid bandwidth,
hence achieving better performance. Increasing the total chirp band-
width and ADC sampling rate improves the effective bandwidth,
which in turn improves imaging resolution.

Vary metasurface size. We evaluate the impact of different metasur-
face sizes, as shown in Fig. 13(c). The median RMSE decreases
significantly from 0.098 with 20 X 20 metasurface to 0.06 with
80 % 80 metasurface. However, further increasing metasurface size to
100 % 100 unit cells yields a marginal improvement. Note that even a
small metasurface of 20 x 20 cells increases the channel diversity and
improves the imaging performance, compared with no metasurface
(scheme (b)).

Vary codeword number Next, we evaluate the effect of different
numbers of the phase offset codewords w, as shown in Fig. 13(d).
Similar to the impact of metasurface sizes, the median RMSE drops
from 0.067 to 0.061 as the codeword number increases from 2 to 6.
After the codeword number exceeds 6, the performance benefits are
negligible.

Vary targeting window size. As the imaging plane is placed 30cm
away from the mmWave transceiver, the peak energy lies in the
range of interest of the target image plane. However, information
from a single range bin is insufficient for effective imaging due
to signal leakage across range bins. Fig. 13(e) plots the impact of
applying different range bin window sizes around the target range
bin. The best performance is achieved using a window size of 5
range bins. Too few range bins around the target range bin could
lead to missing useful information due to signal leakage. Too large

range bin windows may contain noise introduced by multipath and
environmental objects, which also degrades the imaging performance
and stability.

Performance of different imaging reconstruction algorithms.
We further compare our imaging reconstruction method (Sig2/mg
Diffusion) with three other imaging reconstruction strategies on
our testbed: (i) least square linear regression (Istsq), (ii) traditional
ADMM, and (iii) denoising diffusion using ADMM outputs (ADMM
+ Diffusion). Fig. 14 shows that our signal-to-image diffusion method
achieves the best performance due to the effectiveness of our diffu-
sion approach. Compared with the traditional compressive sensing
method ADMM, our approach automatically learns the image distri-
bution and does not rely on the low-rank assumption, outperforming
ADMM by 60%. Compared with the image-to-image diffusion ap-
proach, our signal-to-image diffusion learns the inherent relationship
between the measurement matrix A and target signal r and exploits
the direct relationship between reflected signals and targeted images,
thereby achieving better image reconstruction by 25%.

8.4 Performance with Non-sparse Images

Traditional compressive sensing methods, such as ADMM, assume
the target images to be sparse or low-ranked. However, the sparse
constraint does not necessarily hold in real-world images. We com-
pare the reconstruction performance of the ADMM algorithm and
our signal-to-image diffusion network on images with different ef-
fective ranks, as shown in Fig. 15. Since the traditional compressive
sensing method assumes low-rank conditions, it fails to reconstruct
reasonable images after the rank exceeds a certain threshold. On the
other hand, our signal-to-image diffusion automatically adopts the
image distributions and is robust under different effective ranks.

8.5 Imaging with Higher Resolutions

Owing to the short wavelength of 77GHz mmwave, MIMSID is capa-
ble of performing accurate image reconstructions in sub-centimeter
resolution. Fig. 16 (a) shows the performance of MIMSID under
various resolutions below 1cm. The optimal rank of A decreases as
the resolution becomes more fine-grained. When the resolution is
below the mmWave wavelength (3.8mm), RMSE increases dramati-
cally. The maximum resolution for MIMSID to achieve high-quality
imaging (i.e., RMSE<O0.1) is 5mm, indicating MIMSID’s ability to
perform high-accuracy imaging under sub-centimeter resolution.
Fig. 16 (b) shows an example at the 5mm resolution.
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8.6 Angular Resolution Analysis

To further evaluate the gain in the resolution of MIMSID, we experi-
ment to show the performance of our system under different angular
resolutions. We place two adjacent pixels on the image plane, either
horizontally or vertically, and gradually vary their separation, hence
adjusting the included angle between these pixels and the transceiver
from 0.4° to 5°. Low RMSE indicates that our system is able to
resolve the two pixels as distinct pixels. As shown in Fig. 17, the
RMSE remains under 0.1 when the angular resolutions are larger
than 0.8° horizontally and 2° vertically. The difference in the hori-
zontal and vertical directions results in different antenna array sizes
in the two directions. Compared with the MWCASRF-EVM radar
without a metasurface (with 1° azimuth resolution and 15° elevation
resolution), the gains in angular resolution are 125% horizontally and
750% vertically. The gain difference favoring the vertical direction
is due to the end-to-end optimization framework for image recon-
struction, which simultaneously enhances the horizontal and vertical
resolutions of the system towards the same resolution.

8.7 Comparison with SAR

We compare MIMSID with the state-of-the-art mmWave imaging
method, namely Synthetic Array Radar (SAR), as shown in Fig. 18.
Our static imaging system, containing 86 virtual transceiver antennas
in the azimuth direction and under a size of 15¢cm X 15cm X 15¢m, is
comparable to a SAR imaging system with 20cm X 20cm aperture
size and 8 X 192 X 24 virtual transceiver antennas, where 192 and
24 are the scanning steps in x and y direction, respectively. How-
ever, SAR systems require large deployment spaces and mechanical
movements, while our prototype system is small and stationary, and
can fit into compact assembly lines and narrow corridors. Moreover,
as shown in Fig. 18, if the SAR system scans at 2cm/s [43, 60],
the scanning time of a 20cm X 20cm SAR is 240s. If the object is
moving in an assembly line, the long scanning time can result in
image distortion or missing the object. In contrast, MIMSID scans
a frame in less than 0.3ms and treats the slow-moving object (e.g.,
1m/s) as a static object, thereby achieving good imaging quality.
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8.8 Impact of Environment

MIMSID takes A and r as the input, eliminating the model’s depen-
dency on specific environments. However, owing to the propagation
loss with reflection angles, distances, and occlusions, the SNR of A
and r drops, resulting in worse imaging performance. In this section,
we evaluate the impact of various environmental changes on our
imaging system.

Impact of AoA. To evaluate the impact of different angles of arrival
(AoAs), we place the image plane at different angles from the center
of the mmWave module and perform recalibration each time. We
vary the angle from 0° to 60°. Fig. 19 plots the median RMSE across
a wide range of AoAs. The system’s performance is robust across an
AoA range of —40° to 40°. This shows our system can reconstruct
images accurately even at low SNR and with angle misalignments
with the predefined imaging plane.

Impact of imaging distance. Compared to acoustic imaging ap-
proaches [12], mmWave signals can achieve high-accuracy imaging
at longer distances owing to their short wavelength and relatively
low attenuation. We evaluate the imaging performance of different
imaging distances. We place the imaging plane at varying distances
from the center of the mmWave module and perform recalibration
each time. Fig. 20 shows that our imaging system can accurately
reconstruct high-quality images (RMSE < 0.1) up to 80cm with
1cm imaging resolution, well-suited for applications such as security
checks in a corridor or product inspections beside an assembly line.

Impact of channel drifting. Due to the imperfection of the mmWave
hardware, signal channels (phase and amplitude) may drift over time.
However, as shown in Fig. 21, our imaging system can perform
high-accuracy image reconstruction (RMSE<0.1) over 5 days. This
indicates our imaging system is consistent over a long time before
recalibration to update A. Moreover, we can apply efficient channel
estimation (Sec. 6) to update the measurement matrix Ayecover Using
a few samples (e.g., 30 samples for a 144 image plane). Our esti-
mated channel Ayecover’s performance (Fig. 22 (d)) is close to the
ground truth channel A; (Fig. 22 (b)), much better than the channel
measured one week ago (Ay, Fig. 22 (c)) on a 12 X 12 image plane.
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Impact of occlusion. We further conduct experiments to evaluate the
imaging performance under various occlusions. We cover the image
grid with common materials, such as cloth, opaque plastic sheets,
and paper covers. As shown in Fig. 23, our system can correctly
reconstruct the objects while they are visually obstructed, making it
possible for our system to perform in visually obstructed scenarios,
such as security checks and product inspections.

Impact of environment. We evaluate the imaging performance in
various real-world environments, including an open indoor area, a
narrow corridor, and a clustered room. As shown in Fig 24, the
RMSE offsets of the corridor and the cluster room scenarios com-
pared to the open space scenario are 2.44% and 15.54%, respectively.
This indicates that MIMSID is resilient to environmental changes.
We believe this is due to the introduction of range-gating, which can
effectively filter out the out-of-ROI reflections and multipaths.

8.9 Real-object Imaging

As shown in Sec. 8.8, MIMSID can generate high-quality images
of occluded subjects, well-suited for applications such as security
checks and assembly line quality inspections. Fig. 25 simulates two
typical real-world use cases of MIMSID, metal weapon detections
and product defect detections. In the first example, the images of a
gun, a cutter knife, and a metallic shovel are accurately reconstructed,
indicating the effectiveness of MIMSID in metal weapon detections.
In the second example, disc shapes are generated with different
defect conditions, proving MIMSID is capable of detecting defective
products with broken shapes.

Real-world objects may involve movements. Fig. 25(c) simulates
an example of object movements on an assembly line. Our system
is able to avoid motion blur with an object speed of 1.44m/s [36]
owing to the short framing rate of our system (i.e., 0.24ms per frame).
The objects can be treated as static in each frame, especially when
the object is moving relatively slowly and uniformly, such as in
assembly lines and through security inspections. The objects can
be seen as sequential images with different positions and achieve a
median RMSE of 0.074.

The imaging scenario can be further extended to 3D imaging with
multiple image planes at different distances. Fig. 26 shows a 3D
image of a gun and a cutter knife with 4 image planes. The image
planes are separated by 5mm and construct a 20cm X 20cm X 2cm
3D imaging space 30cm away from the transceiver. The shapes and
positions of the objects are reconstructed clearly with an RMSE of
0.141, indicating the effectiveness in performing 3D imaging.

9 Limitation and Discussion

Reflecting surface conditions. Although MIMSID enhances the
system’s tolerance to varying surfaces and materials by introducing
noise to the training samples, the reflectance properties of the object
remain a crucial factor influencing imaging quality. Low-reflective
surfaces, such as human body parts, reflect significantly less signal
compared to metals, leading to noise-dominated received signals and
channel mismatches between the object and the calibration matrix.
Additionally, objects with mirror-like reflections pose challenges
for imaging, as a substantial portion of the reflective signals is not
captured by the receiver. We will continue to take measurements to
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develop more robust models that account for materials with diverse
reflectance characteristics.

Recalibration cost. While MIMSID is resilient to environmental
changes, the end-to-end optimization and passive metasurface de-
sign are dependent on the distance, size, and resolution of the image
plane. The channel matrix A needs to be recalibrated if the image
plane changes. To maintain the target within the predefined image
plane at all times, one potential approach is to calibrate a large 3D
image plane that encompasses all possible target locations. However,
this approach significantly increases the calibration effort. By inves-
tigating automated calibration techniques, such as the use of robotic
arms or rails, the time and labor costs associated with calibration
could be reduced. This aspect is left for future exploration.

Pre-defined static metasurface. MIMSID employs a PCB-printed
metasurface for virtual phase array expansion, which may limit the
system’s flexibility in adapting to new predefined image planes. One
potential solution is to optimize the metasurface for a large 3D image
plane that covers all possible target locations. However, this could
significantly increase computational complexity. To facilitate rapid
updates, simplify manufacturing, and reduce costs, paper-printed
metasurfaces [28] could be considered as a replacement for the
current metasurfaces. The phase manipulation capabilities of paper-
printed metasurfaces at W-band require further investigation.

System misalignment. As MIMSID necessitates channel modeling
between the transceiver, metasurface, and the image plane, precise
alignment of these components is crucial for optimal performance.
The predefined image plane is conceptual and does not require man-
ual alignment. However, misalignment between the transceiver and
the metasurface can adversely affect system performance. The light-
weight metasurface is easy to deploy and align with the transceiver,
and the entire system can be encapsulated in a protective enclo-
sure to stabilize the relative positions of the components, thereby
minimizing the risk of misalignment.

10 Conclusion

In this paper, we develop MIMSID, a novel system for high-resolution
W-band mmWave imaging. Our system utilizes a small, COTS
transceiver array without any mechanical movement. We design
a passive transmissive metasurface at 77 — 81GHz with a high trans-
mission rate and a wide range of phase manipulation to significantly
improve the imaging resolution. In addition, we repurpose the state-
of-the-art image generation diffusion models for image reconstruc-
tion and design a signal-to-image diffusion network for mmWave
imaging. Our imaging system achieves a median RMSE of 0.061
for a 20cm x 20cm image plane with 1cm resolution, indicating the
effectiveness of MIMSID. We believe this work inspires further
development of compact mmWave imaging systems.
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